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a b s t r a c t

In this paper, we consider the peak-covariance stability of Kalman filtering subject to packet losses. The
length of consecutive packet losses is governed by a time-homogeneous finite-state Markov chain. We
establish a sufficient condition for peak-covariance stability and show that this stability check can be
recast as a linear matrix inequality (LMI) feasibility problem. Compared with the literature, the stability
condition given in this paper is invariant with respect to similarity state transformations; moreover, our
condition is proved to be less conservative than the existing results. Numerical examples are provided to
demonstrate the effectiveness of our result.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems are closed-loop systems, wherein
sensors, controllers and actuators are interconnected through a
communication network. In the last decade, advances of modern
control, micro-electronics, wireless communication and network-
ing technologies have given birth to a considerable number of net-
worked control applications.

In networked control systems, state estimation such as using a
Kalman filter is necessary whenever precise measurement of the
system state cannot be obtained. When a Kalman filter is running
subject to intermittent observations, the stability of the estimation
error is affected by not only the system dynamics but also by
the statistics of the packet loss process. The stability of Kalman
filtering with packet drops has been intensively studied in the
literature. In Sinopoli et al. (2004), Plarre and Bullo (2009), Mo and
Sinopol (2010), Shi, Epstein, and Murray (2010) and Kar, Sinopoli,
andMoura (2012), independently and identically distributed (i.i.d.)
Bernoulli packet losses have been considered. Some other research
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works assume the packet drops, due to the Gilbert–Elliott channel
(Gilbert, 1960; Elliott, 1963), are governed by a time-homogeneous
Markov chain. Huang andDey (2007) introduced the notion of peak
covariance, which describes an upper envelope of the sequence of
error covariancematrices for the case of an unstable scalar system.
They focused on its stability with Markovian packet losses and
gave a sufficient stability condition. The stability condition was
further improved in Xie and Xie (2007) and Xie and Xie (2008).
In Wu, Shi, Anderson, and Johansson (0000), the authors proved
that the peak-covariance stability implies mean-square stability
for general randompacket drop processes, if the systemmatrix has
no defective eigenvalues on the unit circle. In addition to the peak-
covariance stability, the mean-square stability was considered for
some classes of linear systems in Mo and Sinopoli (2012), You,
Fu, and Xie (2011), and weak convergence of the estimation error
covariance was studied in Xie (2012).

In the aforementioned packet lossmodels, the length of consec-
utive packet losses can be infinitely large. In contrast, some works
also considered bounded packet loss model, whereby the length of
consecutive packet losses is restricted to be less than a finite inte-
ger. A real example of bounded packet losses is the WirelessHART
(Wireless Highway Addressable Remote Transducer) protocol, the
state-of-the-art wireless communication solution for process au-
tomation applications. In WirelessHART, there are two types of
time slots: one is the dedicated time slot allocated to a specific
field device for time-divisionmultiple-access (TDMA) based trans-
mission and the other is the shared time slot for contention-based
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communication. A contiguous group of time slots during a con-
stant period of time forms a superframe, within which every node
is guaranteed at least one time slot for data communication. Vari-
ous networked control problemswith bounded packet lossmodels
have been studied, e.g., Wu and Chen (2007) and Xiong and Lam
(2007); while the stability of Kalman filtering for this kind of mod-
els was rarely discussed. In Xiao, Xie, and Fu (2009), the authors
gave a first attempt to the stability issue related to the Kalman fil-
tering with bounded Markovian losses. They provided a sufficient
condition for peak-covariance stability, the stability notion stud-
ied in Huang and Dey (2007), Xie and Xie (2007) and Xie and Xie
(2008). Their result has established a connection between peak-
covariance stability, the dynamics of the underlying system and
the probability transitionmatrix of the underlying packet-loss pro-
cess. In this paper, we consider the same problem as in Xiao et al.
(2009) and improve the stability condition thereof. The main con-
tributions of this work are summarized as follows:

(1) We present a sufficient condition for peak-covariance stability
of the Kalman filtering subjected to boundedMarkovian packet
losses (Theorem1). Different from that of Xiao et al. (2009), this
stability check can be recast as a linear matrix inequality (LMI)
feasibility problem (Proposition 1).

(2) We compare the proposed condition with that of Xiao et al.
(2009). We show both theoretically and numerically that
the proposed stability condition is invariant with respect
to similarity state transformations, while the one given in
Xiao et al. (2009) may generate opposite conclusions under
different similarity transformations. Moreover, the analysis
also suggests that our condition is less conservative than the
former one.

The remaining part of the paper is organized as follows. Section 2
presents themathematicalmodels of the system and packet losses,
and introduces the preliminaries of Kalman filtering. Section 3
provides the main results. Comparison with Xiao et al. (2009) and
numerical examples are presented in Section 4. Some concluding
remarks are drawn in the end.

Notations. N is the set of positive integers and C is the set of
complex numbers. Sn

+
is the set of n by n positive semi-definite

matrices over the field C. For a matrix X ∈ Cn×n, σ(X) denotes
the spectrum of X , i.e., σ(X) = {λ : det(λI − X) = 0}, and ρ(X)
denotes the spectrum radius of X , X∗, X ′ and X are the Hermitian
conjugate, transpose and complex conjugate of X , respectively. ∥·∥

means the L2-norm on Cn or the matrix norm induced by L2-norm.
The symbol ⊗ represents the Kronecker product operator of two
matrices. For anymatricesA, B, C with compatible dimensions,we
have vec(ABC) = (C ′

⊗ A)vec(B), where vec(·) is the vectorization
of a matrix. Moreover, the indicator function of a subset A ⊂ Ω

is a function 1A : Ω → {0, 1} where 1A(ω) = 1 if ω ∈ A,
otherwise 1A(ω) = 0. The symbolE[·] (resp.,E[·|·]) represents the
expectation (resp., conditional expectation) of a random variable.

2. Problem setup

2.1. System model

Consider the following discrete-time LTI system:

xk+1 = Axk + wk, (1a)
yk = Cxk + vk, (1b)

where A ∈ Rn×n and C ∈ Rm×n, xk ∈ Rn is the process state vector,
yk ∈ Rm is the observation vector, wk ∈ Rn and vk ∈ Rm are zero-
mean Gaussian random vectors with E[wkwj′] = δkjQ (Q ≥ 0),
E[vkvj′] = δkjR (R > 0), E[wkvj′] = 0 ∀j, k. Note that δkj is

the Kronecker delta function with δkj = 1 if k = j and δkj = 0
otherwise. The initial state x0 is a zero-mean Gaussian random
vector that is uncorrelated to wk and vk, with covariance Σ0 ≥ 0.
It can be seen that, by applying a similarity transformation, the
unstable and stable modes of the LTI system can be decoupled.
An open-loop prediction of the stable mode always has a bounded
estimation error covariance, therefore, this mode does not play
any key role in the problem considered below. Without loss of
generality, all eigenvalues ofA are assumed to havemagnitudes not
less than 1. We also assume that (A, C) is observable and (A,Q 1/2)
is controllable. We introduce the definition of the observability
index of (A, C), which is taken from Antsaklis and Michel (2006).

Definition 1. The observability index Io is defined as the smallest
integer such that [C ′, A′C ′, . . . , (AIo−1)′C ′

]
′ has rank n. If Io = 1, the

system (A, C) is called one-step observable.

2.2. Bounded Markovian packet-loss process

In this paper, we consider the estimation scheme, where the
raw measurements {yk}k∈N of the sensor are transmitted to the
estimator over an erasure communication channel: packets may
be randomly dropped or successively received by the estimator.
Denote by a random variable γk ∈ {0, 1} whether or not yk is
received at time k. If γk = 1, it indicates that yk arrives error-free
at the estimator; otherwise γk = 0. Whether γk equals 0 or 1 is
assumed to have been known by the estimator before time k + 1.
In order to introduce the packet loss model, we further define a
sequence of stopping times, the time instants at which packets are
received by the estimator:

t1 , min{k : k ∈ N, γk = 1},
t2 , min{k : k > t1, γk = 1},
... (2)

tj , min{k : k > tj−1, γk = 1}, (3)

where we assume t0 = 0 by convention. The packet-loss process,
τj, is defined as

τj , tj − tj−1 − 1.

As for the model of packet losses, we assume that the packet-
loss process {τj}j∈N is modeled by a time-homogeneous ergodic
Markov chain, where S = {0, . . . , s} is the finite-state space of
theMarkov chain with s being themaximum length of consecutive
lost packets allowed. Here the Markov chain is characterized by a
known transition probability matrix 5 , [πij]i,j∈S in which

πij , P(τk+1 = j|τk = i) ≥ 0. (4)

Denote the initial distribution as p , [p0, . . . , ps], where pj =

P(τ1 = j).

2.3. Kalman filtering with packet losses

Sinopoli et al. (2004) shows that, when performed with inter-
mittent observations, the optimal linear estimator is a modified
Kalman filter. The modified Kalman filter is slightly different from
the standard one in that only time update is performed in the pres-
ence of the lost packet. Define the minimum mean-squared error
estimate and the one-step prediction at the estimator respectively
as x̂k|k , E[xk|γ1y1, . . . , γkyk] and x̂k+1|k , E[xk+1|γ1y1, . . . , γkyk].
Let Pk|k and Pk+1|k be the corresponding estimation and prediction
error covariance matrices, i.e.,

Pk|k , E[(xk − x̂k|k)(·)′|γ1y1, . . . , γkyk]

Pk+1|k , E[(xk+1 − x̂k+1|k)(·)
′
|γ1y1, . . . , γkyk].
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