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a b s t r a c t

Controlling highly uncertain nonlinear systems is in general a quite difficult task, for which Sliding
Mode (SM) control has proved to be an effective option. This brief proposes a SM control strategy
which combines a switched policy with a time-based adaptation of the control gain, thereby allowing
to effectively deal with a very conservative prior knowledge of the upper bounds on the uncertainties,
that usually leads to a large control authority, and related performance degradation. With the proposed
approach, the control effort is adjusted online according to the actual magnitude of the uncertain terms,
eliminating the conservatism in the selection of the control gain.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding mode (SM) control has long been recognized as a pow-
erful control method to counteract non-vanishing external distur-
bances and unmodelled dynamics (Utkin, Guldner, & Shi, 1999),
these uncertainty sources being usually time-dependent, highly
unpredictable and with arbitrary monotonicity. Yet, in conven-
tional SM control, design relies on the knowledge ofworst-case up-
per bounds of the uncertain terms, which, in most practical cases,
result in being highly conservative, with an associated large con-
trol authority that may cause a non-negligible chattering. Several
approaches to adapt the control effort in SM control have been
proposed in the literature over the last decade, (see e.g., Plestan,
Shtessel, Br égeault, & Poznyak, 2010, Kochalummoottil, Shtessel,
Moreno, & Fridman, 2012 and Shtessel, Moreno, Plestan, Fridman,
& Poznyak, 2010), which make the amplitude of the control law
track the magnitude of the uncertain terms but add significant
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complexity to the control scheme, along with the transient issues
of traditional adaptive algorithms.

Recently, switched algorithms proved to be an efficient choice
to achieve performance enhancement with a limited increase in
the controller complexity, see e.g., Corradini and Orlando (2002),
Magni, Scattolini, and Tanelli (2008) and Tanelli and Ferrara (2013).
With reference to SM control, Tanelli and Ferrara (2013) presented
a switched formulation of second order sliding mode (S-SOSM)
controllers, designing a different SOSM control law for each region
of the state space inwhich specific uncertainty bounds are given. In
this work, we aim at presenting an original combination between
switched and time-based adaptationwhich allows us tomanage the
underlying control problemwith unique and enhanced features as
compared to the existing literature. Specifically, we only ask for
very conservative guesses on the upper bounds on the uncertain
terms, as the proposed online adaptation allows us to cope with
such conservatism and retune the control gain to track the actual
uncertainties. Therefore, we can directly comparewith some of the
adaptive methods that do not ask for knowledge of initial upper
bounds, and offer – with respect to such purely adaptive solutions
– all the advantages of the switched SM philosophy. At the
same time, with respect to fixed-structure SM approaches where
the controller parameters cannot vary with time, our solution
allows to avoid the performance degradation and excessive control
authority that comes from tuning the controller parameters based
on poor knowledge on the upper bounds on the uncertainties,
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yielding unnecessarily high gains. A first proposal of the time-
based switched adaptation strategy was presented in Bartolini,
Levant, Pisano, and Usai (1999) and Capisani, Ferrara, and Pisano
(2011). In the present paper, such a strategy is developed for the
Suboptimal SOSM control algorithm, Bartolini, Ferrara, and Usai
(1998), and designed jointly with the switched controller. The
resulting switched/adaptive control law is shown to yield finite-
time convergence to an invariant set, containing the origin, defined
on the basis of the time-varying uncertainty. Most interestingly,
the size of such an invariant set can be a-priori estimated based on
the controller parameters and on the disturbance characteristics,
so that it can be guaranteed to be contained in the innermost
region of the state-space partition, so that the evolution of the
two variables defining the SOSM dynamics is ultimately uniformly
bounded. A preliminary and short version of this work, which
did not contain the proofs of the algorithm convergence, was
presented in Pisano, Tanelli, and Ferrara (2013).

The paper is organized as follows. Section 2 introduces the
considered problem and working assumptions. Section 3 presents
the proposed control algorithm and its convergence properties,
while its performance is discussed in Section 4.

2. Problem statement

We deal with nonlinear, single-input single-output, uncertain
nth order system that can be transformed into the so-called
perturbed chain of integrators form (see e.g., Dinuzzo and Ferrara
(2009)), which takes the expression

ẋi+1 = xi, i = 1, . . . , n − 1
ẋn = λ(x(t)) + ρ(t) + d(x(t))u(t),

(1)

with x = [x1, . . . , xn]T being the system state and λ(x(t)), ρ(t) and
d(x(t)) being sufficiently smooth nonlinear uncertain functions.
Within a sliding mode control framework, assume to select a
sliding manifold

s(x(t)) = xn(t) +

n−1
i=1

cixi(t) = 0, (2)

with the ci being positive constants that make the characteristic
equation zn−1

+
n−1

i=1 ciz i−1
= 0 has all roots with negative

real part. Then it can be shown that (see Bartolini et al., 1998) if
the sliding manifold can be reached in finite time using a second
order SM controller with a discontinuous control signal u̇(t), once
on the sliding manifold the system behaves as a reduced-order,
asymptotically stable linear system.

Consider now the second order uncertain nonlinear system
(often referred to as the ‘‘auxiliary’’ system)

ż1 = z2
ż2 = f (z(t)) + h(t) + g(z(t))v(t),

(3)

where z(t) = [z1(t) z2(t)]T ∈ R2 is the system state, z1(t) =

s(x(t)) is the sliding variable, v(t) = u̇(t) is the control signal and
f (z(t)) and g(z(t)) are uncertain, sufficiently smooth functions,
satisfying all the conditions ensuring existence and uniqueness
of the solution (Khalil, 1996), and with h(t) being a time-varying
perturbation for which a (possibly very conservative) upper bound
H is known, i.e.,

|h(t)| ≪ H, ∀t ≥ 0. (4)

In the case where h(t) = 0, and it holds that

0 < G1 ≤ g(z(t)) ≤ G2, |f (z(t))| ≤ F , (5)

the Suboptimal control law (see e.g., Bartolini et al., 1998)

v(t) = −αV sign

z1(t) − βzMax


, β =

1
2

α =


α∗ if [z1(t) − βzMax][zMax − z1(t)] > 0
1 else,

(6)

where V is the control gain, α is the so-called modulation factor,
and zMax is a piecewise constant function representing the value of
the last extremal point of z1(t) (an extremal or singular point of the
trajectory is defined, see e.g., Bartolini, Ferrara, andUsai (1997) and
Boiko, Fridman, Pisano, and Usai (2007), as a local minimum, local
maximum, or a horizontal flex point) makes the system trajectory
converge onto the sliding manifold z1 = z2 = 0 in finite time
provided that the control parameters α∗ and V are chosen so as to
satisfy

α∗
∈ (0, 1] ∩


0,

3G1

G2


, V > max


F

α∗G1
,

4F
3G1 − α∗G2


. (7)

In this work, the class of perturbations that can be dealt with
by traditional SM control approaches is enlarged, and the auxiliary
system ismodified as in (3) allowing the presence of the additional
time-varying perturbation h(t), along with its associated, possibly
very conservative, upper bound H . Note that in principle it would
be possible to use the suboptimal algorithm with an oversized
control magnitude V obtained according to (7) with the constant
F being replaced by F + H . This approach, however, would lead
to unacceptable chattering. Additionally, as in Tanelli and Ferrara
(2013), we are going to consider region-dependent uncertainty
bounds for the uncertain function f (·). Consider system (3) under
the following assumptions.

(i) State-space partitioning: We assume that the state space Z
of system (3) is partitioned into k regions Ri, i = 1, . . . , k
defined as

Ri :=

(z1, z2) : |z1| ≤ z1,i and |z2| ≤ z2,i


, (8)

with z j,i−1 > z j,i, j = 1, 2, i = 2, . . . , k − 1, while the
outermost region R1 is defined as

R1 :=

(z1, z2) : |z1| ≥ z1,1 and |z2| ≥ z2,1


. (9)

Further, define Wi = ∂Ri+1, i = 1, . . . , k − 1. We introduce
the regions Z1 ≡ R1, Zi = Ri \ Ri+1, i = 2, . . . , k − 1 and
Zk ≡ Rk, which are such that∪i=1,...,k Zi = Z, and we assume
that in each of them different upper and lower bounds for the
uncertainties can be defined, to be specified in the following.
Note that only the innermost region Zk contains the origin.

(ii) State-dependent uncertainty description: Let us assume that
in each region Zi, i = 1, . . . , k a constant upper bound on the
uncertain terms is known, i.e., ∀ i = 1, . . . , k one can write

0 < G1,i ≤ g(z(t)) ≤ G2,i, |f (z(t))| ≤ F i, z ∈ Zi. (10)

Such upper bounds can be determined owing on the fact that
within each of such regions the state norm of the auxiliary
system variables is bounded. In presence of the additional
time-varying uncertainty affecting (3) no fine tuning of the
amplitude of the control law can be made relying on the S-
SOSM strategy only, and thus in this work we complement it
with a time-based adaptationmechanism, which is introduced
in the following section.

Remark 1. The assumption of constant bounds for the uncertain
functions entering the auxiliary system can be relaxed by exploit-
ing the results presented in Bartolini, Pisano, Ferrara, and Usai
(2001), where such bounds were replaced by uncertain functions
of the system state with linear growth, proving a semiglobal con-
vergence result for the suboptimal algorithm with constant gain.
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