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a b s t r a c t

This paper presents a new bivariate dimension reduction method (BDRM) for statistical
moments evaluation and structural reliability analysis with accuracy and efficiency. A
high-order unscented transformation (HUT) is introduced to evaluate the two-
dimensional integrals involved in BDRM, and the free parameter involved in HUT is sug-
gested. In this regard, the proposed BDRM can be formulated accordingly for statistical
moments assessment. Then, the performance function’s probability density function
(PDF) is reconstructed by the shifted generalized lognormal distribution (SGLD) with the
available statistical moments as constraints. Thus, the failure probability can be straight-
forwardly obtained by a simple integral over the PDF. The proposed method is verified
by five numerical examples, including linear and non-linear, explicit and implicit perfor-
mance functions. Besides, some other existing methods are also employed to demonstrate
the advantages of the proposed method. It is found that the proposed method can keep the
trade-off of accuracy and efficiency for structural reliability analysis.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The primary problem in structural reliability analysis is to evaluate the failure probability, which is essentially a
multi-dimensional integral defined by [1,2]

Pf ¼ Prob G Xð Þ 6 0½ � ¼
Z
Xf

pX xð Þdx ð1Þ

where Pf denotes the failure probability; X ¼ X1;X2; � � � ;Xn½ �T is the vector collecting all n basic random variables involved in
structural properties and loading conditions, such as material properties, sectional dimensions and external loads, etc.;
Z ¼ G Xð Þ is the performance function or the limited state function; Xf ¼ XjG Xð Þ 6 0f g denotes the failure domain in the basic
random-variate space; and pX xð Þ is the joint probability density function (PDF) of X. Although this definition is quite simple,
difficulty still arises since the analytical solution of Z ¼ G Xð Þ is usually unavailable except for some special cases due to the
high nonlinearity and a large number of random variables involved in practical problems. This difficulty has motivated var-
ious approximation techniques proposed and developed for structural reliability assessment over the past several decades.
Generally, three categories of methods could be found.
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Sampling-based simulation methods are widely used for evaluating the failure probability, which can be classified under
the first category. It is well-known that the crude Monte Carlo simulation (MCS) [3] can provide accurate results if sufficient
number of samples are employed. However, the computational effort could be prohibitively large when the small failure
probability (i.e. Pf 6 10�3) is of concern and a time-consuming model evaluation is involved. In this regard, it is merely used
as a benchmark method to check the accuracy of newly developed methods. Although various improvements such as the
Importance Sampling [4–6], Directional Sampling [7,8], Subset Simulation [9], Line Sampling [10,11] and Asymptotic Sam-
pling [12] etc. have been developed to further enhance the efficiency of the crude MCS, these methods may still require con-
siderably large computational time to obtain results with reasonable accuracy.

To decrease the computation burden, another route named surrogate model based methods has attracted increasing
attention for structural reliability analysis. They aim at building a simplified explicit mathematical form in place of the orig-
inal performance function, thus the computational effort could be greatly reduced. Some representative surrogate model
based methods, e.g. response surface method [13–15], polynomial chaos expansion[16–18], Kriging methods [19–21], arti-
ficial neural networks [22–24], support vector machines [25–27], have been widely applied in structural reliability analysis.
Nevertheless, it is usually quite difficult to quantify the error of using a surrogate model to substitute the original perfor-
mance function [28].

Moment methods can be classified under the third category for structural reliability analysis. Among them, the first-order
reliability method (FORM) and second-order reliability method (SORM) [2] are regarded as the most popular methods in the
past several decades. The FORM or SORM is based on the first- or second-order Taylor expansions of the performance func-
tion at the most probable point (MPP). Thus, a derivative-based iterative search process is required to locate the MPP. Though
the FORM or SORM can give reasonably accurate results for some practical problems, numerical difficulties in the MPP search
and inaccuracies could be encountered when the nonlinear implicit performance function is considered [29]. The derivative-
based moment methods also include the perturbation method [30–33], Neumann expansion [34,35] and so on. On the other
hand, the derivative-free moment methods are of great interest for structural reliability analysis, where a finite number of
statistical moments are first evaluated and then the reliability can be derived based on these moments. In this regard, the
evaluation of statistical moments, which involves multi-dimensional integrations, plays an important role to the accuracy
and efficiency for reliability considerations. Although, several methods, e.g., the tensor product method [36], sparse grid
method [37], cubature formulation [38,39], and quasi-symmetric point method [40–42] have been developed for this pro-
pose, the method which can keep the trade-off of accuracy and efficiency for moments evaluation, is still of great interest.

The dimension reduction method (DRM) [43,44] is another attractive method for moments evaluation, since it transforms
a multiple-dimensional integration to be several low-dimensional integrations for moments evaluation. Therefore, the dif-
ficulty of computing a multi-dimensional integration can be avoided to some extent. The present study is specifically inter-
ested in the DRM. The univariate dimension method (UDRM) [43] and the eigenvector UDRM [45] could be the most popular
ones, which require considerably few performance function calls since only several one-dimensional integrations are
involved. However, for the high-order moments evaluation of strongly nonlinear performance functions, it is found that
those UDRMs may be inadequate due to two- and other-higher dimensional integrations contained in the residual error
[38,44]. Alternatively, a multiplicative-univariate dimensional reduction method (M-UDRM) is proposed in [46] for frac-
tional rawmoments estimation, which is proved to be quite efficient and accurate for moderate nonlinear performance func-
tions. Nevertheless, it still may not be adequate for the high-order central moments evaluation of a highly nonlinear
performance function since this method is UDRM in essence. To improve the accuracy, the bivariate dimension reduction
method (BDRM) can be employed [44,47,48], which only includes several two-dimensional and one-dimensional integrals.
It is known that, some transformations, e.g., the Rosenblatt or Nataf transformation, can be used to transform the original
random variables into independent standard normal variables. In this regard, only Gaussian-weighted integrals need to
be considered. In literatures, the Gauss-Hermite integration (GHI) scheme is widely adopted to deal with the one- and
two-dimensional integrals involved in BDRM [44,49–51]. However, a large number of points are actually required in BDRM
to achieve a satisfactory accuracy. For example, if the five-point GHI scheme is applied, a total of 25 points are involved in
one two-dimensional integral due to the tensor product rule, which may result in computationally expensive efforts for a
performance function including multiple variables. Hereafter, this BDRM is referred to as the original BDRM. In contrast,
the three-point GHI scheme, which is denoted as GHI2, may be efficient since only 9 points are needed in one two-
dimensional integral. Unfortunately, it may lead to much larger errors than the five-point GHI scheme for the two-
dimensional integrals involved in BDRM. In this regard, the improvements on the efficiency of the original BDRM or the accu-
racy of the BDRM with GHI2 could be of great necessity. In the present paper, a new BDRM, which can keep the tradeoff of
accuracy and efficiency, is established based on employing a high-order unscented transformation (HUT) scheme [52] to
evaluate the two-dimensional integrals involved in BDRM. It will be found that the proposed method is as efficient as the
BDRM with GHI2, however, it is much more accurate and robust than that. Besides, compared with the original BDRM,
the proposed method is able to capture almost the same accuracy for moments estimation with much fewer deterministic
calculations.

Once the first-four moments of the performance function are calculated by the proposed BDRM, a versatile distribution
model named the shifted generalized lognormal distribution (SGLD) [53], which has a rich flexibility in shape and nearly
encompasses the entire skewness-kurtosis permissible for unimodal densities, is fitted to recover the performance function’s
PDF. Then, the failure probability can be obtained by a simple integral over the PDF. The rest of the paper is organized as
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