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a b s t r a c t

This paper addresses the problem of finite-time output feedback stabilization for the perturbed double
integrator system. A simple output feedback proportional–derivative (PD) controller is proposed. Global
finite-time stability is proven based on Lyapunov stability theory and geometric homogeneity technique.
Furthermore, it is proven that the proposed controller can maintain local finite-time stability regardless
of some nonlinear perturbations. Thus, the proposed controller actually can be applied to a large class
of uncertain second-order nonlinear systems. Simulations demonstrate the effectiveness of the proposed
approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Finite-time stabilization of dynamical systems may give rise to
fast transient and high precision and robustness performances be-
sides finite-time convergence to the equilibrium (Bhat & Bernstein,
1998, 2005; Haimo, 1986). Finite-time stabilization of systems is
quickly developing in the last decades, and several schemes can be
found in the literature (Amato, Ambrosino, Cosentino, &De Tomais,
2010; Bhat & Bernstein, 1998, 2005; Hong, 2002; Hong & Jiang,
2006; Huang, Lin, & Yang, 2005; Levant, 2001, 2005, 2007; Moulay
& Perruquetti, 2008; Nagesh & Edwards, 2014; Orlov, 2005; Shtes-
sel, Taleb, & Plestan, 2012; Zhang, Feng, & Sun, 2012).

A main drawback for these finite-time controls is that the
full state information is assumed to be available for feedback.
To overcome this restriction, several output feedback controls for
finite-time stabilization of double integrator have been proposed.
Specifically, Hong, Huang, and Xu (2001) solve the problem of
output feedback finite-time stabilization for the double integrator
and extend to a large class of second-order systems, based on
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finite-time separation principle. Orlov, Aoustin, and Chevallereau
(2011) show that a modification of the twisting controller and
the supertwisting observer can be coupled together to present a
unified framework for the output feedback finite-time stabilization
of a perturbed double integrator. Bernuau, Perruquetti, Efimov,
and Moulay (2012) combine a homogeneous observer with a
homogeneous control to ensure global finite-time stabilization of
the double integrator systems. Other output feedback finite-time
stabilizing controls for dynamical systems can be found in Amato,
Ariola, and Cosentino (2006), Angulo, Fridman, and Levant (2012),
Angulo, Fridman, and Moreno (2013), Dinuzzo and Ferrara (2009),
Li and Qian (2006), Li, Qian, and Ding (2010), Plestan, Moulay,
Glumineau, and Cheviron (2010) and Qian and Li (2005).

This paper presents an alternative design for output feedback
finite-time stabilization of perturbed double integrator. A very
simple but effective output feedback nonlinear PD controller is
proposed. A simple nonlinear filter is constructed to replace the
velocity measurement. The proposed filter does not refer to the
control input. The benefit of this design is that the controller can
be designed separately from the filter and provides much flex-
ibility for the control gains selection with an improved perfor-
mance. Lyapunov stability theory and geometric homogeneity are
employed to prove global finite-time stability. Using homogeneous
techniques presented in Hong et al. (2001), it is also shown that
the proposed controller can retain local finite-time stabilization of
second-order systems with a class of nonlinear perturbations. This
robust property actually extends the applicability of the proposed
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controller to a large class of uncertain second-order nonlinear sys-
tems. Simulations are presented to verify the effectiveness of the
proposed approach.

2. Preliminaries

Some concepts of finite-time stability of nonlinear systems are
reviewed following the approach of Bhat and Bernstein (1998,
2005) and Hong et al. (2001).

Definition 1 (Finite-Time Stability, FTS). Consider the system

ẋ = f (x), f (0) = 0, x ∈ ℜ
n (1)

where f : U0 → ℜ
n is continuous on an open neighborhood U0

of the origin. Suppose that system (1) possesses unique solutions
in forward time for all initial conditions. The equilibrium x = 0 of
system (1) is (locally) finite-time stable if it is Lyapunov stable and
finite-time convergent in a neighborhood U ⊂ U0 of the origin.
The finite-time convergence means the existence of a function
T : U \ {0} → (0, ∞), such that, ∀x0 ∈ U ⊂ ℜ

n, the solution
of (1) denoted by st(x0) with x0 as the initial condition is defined
and st(x0) ∈ U \ {0} for t ∈ [0, T (x0)), and limt→T (x0) st(x0) = 0
and st(x0) = 0 for t > T (x0). When U = ℜ

n, we obtain the global
finite-time stability (GFTS).

Definition 2 (Homogeneity). A function V : ℜ
n

→ ℜ is homoge-
neous of degree d with respect to (w.r.t.) weights r = (r1, . . . , rn)
∈ ℜ

n
+
, if for any given ε > 0, V (εr1x1, . . . , εrnxn) = εdV (x), ∀x ∈

ℜ
n. A vector field f is homogeneous of degree d w.r.t. weights r , if

for all 1 ≤ i ≤ n, the ith component fi is a homogeneous function
of degree ri + d. The system (1) is homogeneous of degree d if f is
homogeneous of degree d.

The following results give a sufficient condition for FTS of
nonlinear systems.

Lemma 1 (Bhat & Bernstein, 2005). Suppose that system (1) is
homogeneous of degree d. Then the origin of the system is finite-time
stable if the origin is asymptotically stable and d < 0.

Lemma 2 (Hong et al., 2001). Consider the following system

ẋ = f (x) + f̂ (x), x ∈ ℜ
n (2)

where f (x) is a continuous homogeneous vector field of degree d < 0
w.r.t. (r1, . . . , rn) satisfying f (0) = 0, and f̂ (x) is also a continuous
vector field satisfying f̂ (0) = 0. Assume that x = 0 is an
asymptotically stable equilibrium of the system ẋ = f (x). Then x = 0
is a locally finite-time stable equilibrium of the system (2) if

lim
ε→0

f̂i(εr1x1, . . . , εrnxn)
εd+ri

= 0, i = 1, . . . , n, ∀x ≠ 0 (3)

uniformly for any x ∈ Sn−1.

3. Main results

In this section, output feedback controller for global finite-
time stabilization of double integrator is first proposed. Then it is
extended to perturbed double integrator systems.

3.1. A solution for double integrator

Consider the following double integrator system
ẋ1 = x2
ẋ2 = u (4)

where x1 and x2 are the states of the system, u is the input. Our
first objective is to design a simple output feedback nonlinear PD
controller such that the zero solution of the closed-loop system
composed of (4) and the control law is global finite-time stable.
The following definition is used

sigα(z) := |z|α sgn(z) (5)

where z ∈ ℜ, α > 0, and sgn(·) is the standard signum function.
We propose the following output feedback finite-time PD

(OFPD) controller to solve the above stated problem:

u = −kpsigα1(x1) − kdsigα1(υ) (6)

q̇c = −asigα2(qc + bx1) (7)
υ = qc + bx1 (8)

where kp, kd, a, b, and 0 < α1 < 1 are positive constant design
gains, α2 = (α1 + 1)/2, and qc is an auxiliary variable.

Taking the time derivative of (8) and after substituting (7) into
the expression and using (4), yields

υ̇ = −asigα2(υ) + bx2. (9)

Substituting the control input (6) into (4), it follows that
ẋ1 = x2
ẋ2 = −kpsigα1(x1) − kdsigα1(υ).

(10)

The main result of this section is given in Theorem 1.

Theorem 1. The zero solution of the closed-loop system (9) and
(10) is globally finite-time stable.

Proof. The proof proceeds in the following two steps. First, the
global asymptotic stability (GAS) is proven following Lyapunov’s
direct method and LaSalle’s invariance theorem. Second, the GFTS
is shown using Lemma 1.

Step 1 (GAS analysis). To this end, the positive-definite
Lyapunov function candidate is proposed as follows:

V =
kp

α1 + 1
|x1|α1+1

+
1
2
x22 +

kdb−1

α1 + 1
|υ|

α1+1 . (11)

Taking the time derivative of (11) along the closed-loop system
(9) and (10), it follows that

V̇ = kpsigα1(x1)ẋ1 + x2ẋ2 + kdb−1sigα1(υ)υ̇. (12)

Upon substituting (9) and (10) into (12), we have

V̇ = −kdab−1sigα1(υ)sigα2(υ) = −kdab−1
|υ|

α1+α2 . (13)

Hence, V is a positive-definite Lyapunov function whose time
derivative V̇ is negative semi-definite. In fact, V̇ = 0means υ = 0.
From (10) and (9), respectively, we have x1 = 0 and x2 = 0. By
LaSalle’s invariance theorem (Slotine & Li, 1991), we have x1(t) →

0, x2(t) → 0, and υ(t) → 0 as t → ∞ for any initial state
(x1(0), x2(0), υ(0)). The GAS of closed-loop system (9) and (10)
is completed.

Step 2 (GFTS analysis). The GFTS is proven using Lemma 1. To
do so, let z1 = x1, z2 = ẋ1 = x2, z3 = υ , and z = (z1, z2, z3)T .
The state equation of the closed-loop system (9) and (10) can be
rewritten asż1 = z2
ż2 = −kpsigα1(z1) − kdsigα1(z3)
ż3 = −asigα2(z3) + bz2.

(14)

Clearly, z = 0 is the equilibrium of (14). Moreover, system (14)
is homogeneous of degree d = α2 − 1 < 0 w.r.t. (r1, r2, r3) with
r1 = r3 = 1 and r2 = α2. In addition, it is clear from step 1 that
z = 0 is the asymptotic equilibrium of (14). Hence, by Lemma 1,
the GFTS directly follows. This completes the proof. �
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