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a b s t r a c t

Manifold is considered to be a low dimensional surface embedded in a high dimensional
vector space, and manifold learning is to find this surface based on data points sampled
from this vector space. Neighborhood construction is a critical step in manifold learning
to retain local relationship of data, i.e., neighbors and the connection weights. Current
methods for manifold learning, including locally linear embedding, locality preserving pro-
jection, etc., assume fixed and linear neighborhood, thus lacking in adaptability for han-
dling nonlinear system states caused by variations in machine condition or operation. To
overcome this limitation, an enhanced manifold learning method is developed by utilizing
kernel sparse representation to determine data neighbors and connecting weights. This
enhanced manifold learning method maps data into a feature space where a kernel func-
tion is adopted to represent data by its neighbors nonlinearly. The number of data neigh-
bors and connecting weights are determined adaptively by kernel sparse representation. It
is found that the developed method enables state-related feature fusion and redundant
feature elimination, thus is more effective for dimensionality reduction and feature extrac-
tion than traditional manifold learning. Analysis using vibration data measured on a gear-
box with multiple faults of varying severity degrees confirmed the performance of the
developed method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration analysis has been widely applied to mechanical system health monitoring due to the accessibility to vibration
sensors. Over the past decades, analysis methods in the time domain [1,2], frequency domain [3–6] and time-frequency
domains [7–9] have been developed to analyze characteristics of vibration signals and extract features with structural
defects in bearings and gearboxes, for machine health monitoring, root cause diagnosis, and remaining useful life prognosis
[10–13]. Considering the interrelationship of the features and their respective sensitivity relative to the severity of defects,
dimensionality reduction techniques are often needed to eliminate redundant information and fuse multiple features to
improve the effectiveness and efficiency machine health monitoring [14].
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Duo to the nonlinearity in degradation process of machine, vibration signals sampled during the degradation process
formed a nonlinear and curved surface [15], which is considered to be a manifold. Manifold is a low dimensional surface
embedded in a high dimensional vector space, and it can be discovered by manifold learning method. As an emerging
method for dimensionality reduction, manifold learning has demonstrated improved nonlinear feature extraction ability
over other methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) for data compression
[16]. Variants of manifold learning methods, such as Laplacian eigenmaps (LE) [17], locality preserving projection (LPP)
[18,19], locally linear embedding (LLE) [20–23], neighborhood preserving embedding (NPE) [24], local tangent space align-
ment (LTSA) [25,26] and isometric feature mapping (IsoMap) [27] have been investigated for machine health monitoring.
Manifold learning aims to keep the local relationship among data points gathered as part of feature vectors of vibration sig-
nals. By doing so, data that are similar in original feature space will remain close to each other in the feature space after
dimensionality reduction.

While the effectiveness of manifold learning has been demonstrated in the literature, several limitations still exist. Firstly,
local linearity is assumed on a manifold, and local patch of a manifold is considered to be a linear surface. Given that a man-
ifold is a curved surface, linear distance such as the Euclidean distance will inherently not be a suitable metric to measure the
distance between the points on a data manifold. Secondly, local neighborhood of the data is characterized by the number of
neighbors and connecting weights. The number of neighbors and the function used to calculate connecting weights are
assumed to be fixed in current methods. This means that fixed neighborhood expression is forced to be used for the mechan-
ical states with or without fault. However, due to impulse component caused by mechanical fault and random component
caused by fault propagation, data monitored from varying machine states are associated with different structures. Taking
bearing as an example, distribution of the data from fault-free state is stable without fluctuation, while impulse and random-
ness caused by bearing fault make the data fluctuate in a large range. This can be seen in the features of bearing data mon-
itored in its whole life-cycle, and fluctuation in amplitude of vibration signal caused by the bearing fault can be obviously
observed [14,28,29]. Hence, adaptive neighborhood is needed for manifold learning to make it more effective and flexible
to describe characteristics of data from different mechanical states.

A critical issue in adaptive neighborhood construction is to represent data adaptively without need to set a fixed neigh-
borhood. Sparse representation is an adaptive method for data representation, and sparse-based dimensionality reduction
method, i.e., the sparsity preserving projection [30], has been presented. The sparse representation can be extended as kernel
sparse representation (KSR) by combining it with kernel function for nonlinear data representation in machine health mon-
itoring. To improve performance of manifold learning in dealing with nonlinearity and adaptability, an enhanced manifold
learning method is presented by introducing KSR into manifold learning in this paper. LLE is taking as an example and the
enhanced manifold learning method is given by leveraging KSR to solve the number of neighbors and connecting weights in
LLE. This enhanced manifold learning is termed as kernel sparse locally linear embedding (KS-LLE). To validate effectiveness
and advantage of the KS-LLE for machine health monitoring, a case study on fault severity assessment of a gearbox is
considered.

The rest of this paper is organized as follows: kernel sparse representation-based adaptive neighborhood, which is the
first step in manifold learning, is introduced in Section 2. In Section 3, the KS-LLE method is described. Case study on gearbox
diagnosis by utilizing the KS-LLE method is shown in Section 4. Discussion of characteristics of the KS-LLE method is pre-
sented in Section 5 and some conclusions are summarized in Section 6.

2. Kernel sparse representation-based adaptive neighborhood

2.1. Neighborhood in manifold learning

Manifold learning is a neighborhood-based method, and neighborhood that determines data neighbors and connecting
weights plays a fundamental role in manifold learning methods, including LE, LPP, LLE, NPE and IsoMap. Though objective
functions are different, a common issue in these methods is construction of data neighborhood. Methods for neighborhood
construction fall into two categories: k-nearest neighbor (knn) and e-neighborhood. In knn method, k samples with the
smallest distance to sample xi; i ¼ 1; � � � ;n are chosen from all the n samples to form a k-nearest neighborhood of xi, and
sample xj; j ¼ 1; � � � ;n is connected to xi if it is one of the k-nearest neighbors of xi. In the e-neighborhood method, a sample
xj is treated as a neighbor of xi if their Euclidean distance is smaller than a threshold, expressed mathematically as

kxi � xjk2 < e; i; j ¼ 1; � � � ;n with e > 0 denoting the threshold.
After neighbors are identified, the next step is to calculate connecting weight of the neighbors. In LE and LPP, the weight

between for the neighbors is assigned by a heat kernel [31], which is described as

wij ¼ exp �kxi � xjk2
t

 !
; i; j ¼ 1; � � � ; n ð1Þ

wherewij is the weight, and t is a parameter in the heat kernel. If these two samples are not neighbors, the weight is set to be
0. In IsoMap, weight between neighboring points xi and xj is defined by the Euclidean distance, that is dðxi; xjÞ ¼ kxi � xjk. In
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