
Automatica 60 (2015) 122–126

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Technical communique

Gaussian filter for nonlinear systems with correlated noises at the
same epoch✩

Yulong Huang a, Yonggang Zhang a,1, Xiaoxu Wang b, Lin Zhao a

a Department of Automation, Harbin Engineering University, Harbin 150001, China
b School of Automation, Northwestern Polytechnical University, Xi’an, Shanxi 710072, China

a r t i c l e i n f o

Article history:
Received 22 September 2014
Received in revised form
26 May 2015
Accepted 8 June 2015
Available online 18 July 2015

Keywords:
State estimation
Gaussian filter
Correlated noises at the same epoch
Nonlinear systems

a b s t r a c t

This paper proposes a general framework solution of Gaussian filter (GF) for both linear and nonlinear
dynamic systems with correlated noises at the same epoch. Detailed discussions and simulation compar-
isons with existing Gaussian approximation recursive filter and existing de-correlating GF are provided,
which show advantages of estimation accuracy of the proposed method in some applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear filtering with correlated noises at the same epoch
has been gaining more attention in many applications. There are
two frameworks available to solve this problem including the de-
correlating framework (Bar-Shalom, Li, & Kirubarajan, 2001) and
Gaussian approximation recursive filter (GASF) framework (Wang,
Liang, Pan, & Yang, 2012). For linear Gaussian system, these two
frameworks are completely equivalent (Chang, 2014a), and for
general nonlinear system, they are equivalent in the linear mini-
mummean square error (MMSE) sense (Wang, Liang, Pan, &Wang,
2014). Many nonlinear filters have been derived based on these
two frameworks (Chang, 2014b; Chen &Ma, 2011; Xu, Dimirovski,
Jing, & Shen, 2007). However, both GASF and de-correlating frame-
works have some drawbacks in the application of nonlinear sys-
tems, as will be discussed in Sections 3 and 4. In this paper, a
novel general framework of correlated Gaussian approximate fil-
ter (CGAF) for nonlinear systemswith correlated noises at the same
epoch is derived and compared with existing methods.
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recommended for publication in revised form by Associate Editor Giancarlo Ferrari-
Trecate under the direction of Editor André L. Tits.
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2. General framework of CGAF

Consider the following discrete-time nonlinear stochastic sys-
tem with correlated noises at the same epoch as shown by the
state-space model
xk = fk−1(xk−1) + Gk−1wk−1
zk = hk(xk) + vk

(1)

where k is the discrete time, fk−1(·) andhk(·) are someknown func-
tions, Gk−1 ∈ Rn×q is known process noise matrix, xk ∈ Rn is the
state vector, zk ∈ Rm is the measurements vector, wk ∈ Rq and
vk ∈ Rm are correlated zero-mean Gaussian white noises satisfy-
ing E[wkwT

l ] = Qkδkl, E[vkvT
l ] = Rkδkl and E[wkvT

l ] = Skδkl, where
δkl is the Kronecker delta function, the initial state x0 is a Gaussian
random vector with mean x̂0|0 and covariance P0|0, and it is uncor-
related with wk and vk. Similar to that in Arasaratnam and Haykin
(2009), we present a Gaussian assumption which has been widely
accepted and used to design the CGAF for system formulated in (1).

Assumption 1. xk and zk are jointly Gaussian conditioned on pre-
vious measurements Zk−1, i.e. p(xk, zk|Zk−1) is Gaussian, where
Zk−1 = {zj}k−1

j=1 .

The Gaussian assumption is reasonable for some applications
with mild nonlinearity, such as target tracking (Arasaratnam &
Haykin, 2009; Bar-Shalom et al., 2001) and ballistic target reen-
try (Chang, 2014b).

http://dx.doi.org/10.1016/j.automatica.2015.06.035
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.06.035
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.06.035&domain=pdf
mailto:heuedu@163.com
mailto:zhangyg@hrbeu.edu.cn
mailto:woyaofly1982@163.com
mailto:zhaolin@hrbeu.edu.cn
http://dx.doi.org/10.1016/j.automatica.2015.06.035


Y. Huang et al. / Automatica 60 (2015) 122–126 123

Similar to that in Wang et al. (2012), in the case that process
noise and measurement noise are correlated at the same epoch,
we need to define the following augmented state vector ξk =

[xTk wT
k ]

T . If Gaussian approximations to p(xk|Zk) and p(wk|Zk)
have been updated, the posterior probability density function
(PDF) p(ξk|Zk) of the augmented state ξk is also Gaussian, and its
first two moments can be formulated asξ̂k|k =


x̂k|k
ŵk|k


Pξξ

k|k =


Pk|k Pxw

k|k
(Pxw

k|k )
T Pww

k|k


Pxw
k|k = E[x̃k|kw̃T

k|k|Zk]

(2)

where x̃k|k = xk − x̂k|k and w̃k|k = wk − ŵk|k.

Theorem 1. Based on Assumption 1, the Gaussian approximation of
p(xk|Zk) has the filtering estimation x̂k|k and the covariance Pk|k at
time k of the state xk as the unified form:

x̂k|k = x̂k|k−1 + K x
k (zk − ẑk|k−1) (3)

Pk|k = Pk|k−1 − K x
kP

zz
k|k−1(K

x
k )

T (4)

K x
k = Pxz

k|k−1(P
zz
k|k−1)

−1 (5)

where

x̂k|k−1 =


Rn

fk−1(xk−1)N(xk−1; x̂k−1|k−1, Pk−1|k−1)

× dxk−1 + Gk−1ŵk−1|k−1 (6)

Pk|k−1 =


Rn

(fk−1(xk−1) + Gk−1ŵx,k−1|k−1)

× (fk−1(xk−1) + Gk−1ŵx,k−1|k−1)
T

×N(xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

− x̂k|k−1x̂Tk|k−1 + Gk−1Ωk−1|k−1GT
k−1 (7)

ŵx,k−1|k−1 = ŵk−1|k−1 + (Pxw
k−1|k−1)

TP−1
k−1|k−1(xk−1 − x̂k−1|k−1) (8)

Ωk−1|k−1 = Pww
k−1|k−1 − (Pxw

k−1|k−1)
TP−1

k−1|k−1P
xw
k−1|k−1 (9)

ẑk|k−1 =


Rn

hk(xk)N(xk; x̂k|k−1, Pk|k−1)dxk (10)

P zz
k|k−1 =


Rn

hk(xk)hT
k (xk)N(xk; x̂k|k−1, Pk|k−1)dxk

− ẑk|k−1ẑTk|k−1 + Rk (11)

Pxz
k|k−1 =


Rn

xkhT
k (xk)N(xk; x̂k|k−1, Pk|k−1)dxk − x̂k|k−1ẑTk|k−1. (12)

Proof. Similar to the proof of the state correction of GASF inWang
et al. (2012), based on Gaussian Assumption 1, the posterior PDF
p(xk|Zk) is updated as Gaussian, and (3)–(6) and (10)–(12) can be
easily proved. The proofs of (7)–(9) are given in Appendix A.

Theorem 2. Based on Assumption 1, the Gaussian approximation of
p(wk|Zk) has the filtering estimation ŵk|k and the covariance Pww

k|k at
time k of the process noisewk as the unified form:

ŵk|k = Kw
k (zk − ẑk|k−1) (13)

Pww
k|k = Qk − Kw

k P zz
k|k−1(K

w
k )T (14)

Kw
k = Sk(P zz

k|k−1)
−1 (15)

Pxw
k|k = −Pxz

k|k−1(P
zz
k|k−1)

−1ST
k . (16)

Proof. See Appendix B.

The proposed CGAF framework formulated in Theorems 1 and 2
includes prediction step in (6)–(9) and update step in (3)–(5) and
(10)–(16).

3. Comparisons with existing GASF method and de-correlating
method

ExistingGASFmethod, de-correlatingmethod and the proposed
CGAF method are almost consistent in computational burden and
ease of implementation. However, the proposed CGAF framework
is different to existing frameworks in assumptions and computa-
tions of state prediction estimation and corresponding prediction
error covariance matrix. Moreover, the proposed CGAF has advan-
tages as compared with existing GASF for nonlinear process func-
tions and de-correlating method for nonlinear measurement func-
tions in estimation accuracy, aswill be discussed in this section and
shown in simulations.
(1) It is easy to prove that the proposed CGAF is equivalent with
GASF for linear process functions and de-correlating filter for linear
measurement functions. Also we can prove that the proposed
CGAF is equivalent with standard GF while existing GASF is not
equivalent with standard GF for nonlinear systems with nonlinear
process functions and uncorrelated noises.
(2) Both the proposed CGAF and de-correlating algorithms are
based on Assumption 1, however, GASF algorithm is based on the
Gaussianity of p(xk, zk−1|Zk−2).
(3) Substituting (13) and (15) into (6), we can obtain the state
prediction estimation x̂k|k−1 of the proposed CGAF as follows:

x̂k|k−1 = E[fk−1(xk−1)|Zk−1] + Gk−1Sk−1(P zz
k−1|k−2)

−1

× (zk−1 − ẑk−1|k−2) (17)

where the expectation E[·|Zk−1] is with respect to PDF N(xk−1;

x̂k−1|k−1, Pk−1|k−1). The x̂k|k−1 of GASF is as follows (Wang et al.,
2012):

x̂k|k−1 = E[fk−1(xk−1)|Zk−2] + ψ(P zz
k−1|k−2)

−1(zk−1 − ẑk−1|k−2)

+Gk−1Sk−1(P zz
k−1|k−2)

−1(zk−1 − ẑk−1|k−2) (18)

where the expectation E[·|Zk−2] is with respect to PDF N(xk−1;

x̂k−1|k−2, Pk−1|k−2), ψ = E[f̃k−1|k−2(xk−1)h̃T
k−1|k−2(xk−1)|Zk−2],

f̃k−1|k−2(xk−1) = fk−1(xk−1)−E[fk−1(xk−1)|Zk−2], h̃k−1|k−2(xk−1) =

hk−1(xk−1) − E[hk−1(xk−1)|Zk−2]. The x̂k|k−1 of de-correlating filter
is as follows (Chang, 2014b):

x̂k|k−1 = E[fk−1(xk−1)|Zk−1] + Gk−1Sk−1(Rk−1)
−1

× (zk−1 − E[hk−1(xk−1)|Zk−1]). (19)

It can be seen from (17)–(19) that the state prediction estimation
of the proposed filter is different to that of existing GASF
in computing E[fk−1(xk−1)|Zk−1] and de-correlating filter in
computing ŵk|k.
(4) Substituting (8)–(9) and (13)–(16) into (7), the prediction error
covariance matrix Pk|k−1 of the proposed filter can be rewritten as.

Pk|k−1 = E[f̃k−1|k−1(xk−1)f̃ Tk−1|k−1(xk−1)|Zk−1]

−Gk−1Sk−1(P zz
k−1|k−2)

−1(Pxz
k−1|k−2)

TP−1
k−1|k−1λ

−λTP−1
k−1|k−1P

xz
k−1|k−2(P

zz
k−1|k−2)

−1(Gk−1Sk−1)
T

+Gk−1Pww
k−1|k−1G

T
k−1 (20)

where f̃k−1|k−1(xk−1) = fk−1(xk−1) − E[fk−1(xk−1)|Zk−1], and
λ = E[x̃k−1|k−1 f̃ Tk−1|k−1(xk−1)|Zk−1]. The Pk|k−1 of GASF can be
formulated as (Wang et al., 2012)

Pk|k−1 = {E[f̃k−1|k−2(xk−1)f̃ Tk−1|k−2(xk−1)|Zk−2]

−ψ(P zz
k−1|k−2)

−1ψT
} − Gk−1Sk−1(P zz

k−1|k−2)
−1ψT

−ψ(P zz
k−1|k−2)

−1(Gk−1Sk−1)
T

+ Gk−1Pww
k−1|k−1G

T
k−1. (21)
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