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a b s t r a c t

Hydraulic bushings exhibit significant amplitude dependent behavior which cannot be
captured with the linear time-invariant system theory. Accordingly, Fredette et al.
(2016) have proposed a nonlinear model, but the amplitude sensitivity has not been ade-
quately described as it is affected by multiple inherent design features. To further improve
the predictive capability of nonlinear models, this article extends the prior work by includ-
ing two key dissipation effects within the (elastomeric) fluid compliance chambers. First,
the conventional fluid compliance element is replaced by an equivalent mechanical spring
representing the nonlinear elasticity of the pumping chambers. Fractional calculus based
and friction-type damping elements are added in parallel to the nonlinear spring elements
of pumping chambers. Second, improved quasi-linear models are proposed at four sinu-
soidal excitation amplitudes, demonstrating amplitude sensitivity in model parameters.
Third, new nonlinear models are proposed and numerically simulated, predicting dynamic
stiffness magnitudes and loss angles at multiple excitation amplitudes. The sensitivity of
dynamic properties to the fractional and frictional damping parameters is qualitatively
evaluated. Finally, both quasi-linear and nonlinear models are experimentally validated
and are found to be superior to the ones in the literature.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper, Fredette et al. [1] developed hydraulic bushing models with multiple nonlinear elements including a
measurement based compliance model for the elastomeric chambers. While the previous article offered new insight into
the physics of these devices, the results of [1] suggest that there is room for further improvement in dynamic stiffness pre-
dictions which are sensitive to the excitation amplitude. A major deficiency of prior work [1] has been a lack of damping
formulation for the compliance chambers (containing the hydraulic fluid) although the elastomeric material exhibits signif-
icant viscoelasticity which could influence the amplitude sensitive dynamics. Several investigators have studied the low-
frequency dynamics of hydraulic bushings, but the majority of the literature has employed the linear time-invariant system
principles [2–5], despite significant amplitude sensitivity observed in such devices [1,6–8]. A few researchers have proposed
amplitude sensitive models, using either a quasi-linear or nonlinear approach. For instance, Svensson and Håkansson [6]
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developed a hydraulic bushing model which included a nonlinear elastic element for the rubber path, but used the linear
system principles for the fluid path. Chai et al. [7] proposed a model with a nonlinear fluid resistance term, which introduced
significant amplitude sensitivity. However, this study was limited to a laboratory device which replicated only certain
behavior of a production device. A recent experimental study by Fredette et al. [8] identified pressure dependent compliance
behavior in the fluid system of a production bushing, which led to improved models with both nonlinear fluid resistance and
chamber compliance elements [1,8], but provided limited analysis of the damping.

The major goal of this article is to significantly extend the prior formulation [1] by introducing fractional calculus based
viscoelasticity and additional nonlinear elements. New or improved models of this study are expected to enhance modeling
capabilities and to better understand the underlying physics of hydraulic bushings since they often have complex designs
with interacting features. In particular, the effect of frictionally and fractionally damped compliance chambers will be stud-
ied and a new technique for analyzing this potentially nonlinear feature will be proposed. The literature on this topic is lim-
ited even though the fractional calculus based constitutive laws have been shown to represent the viscoelasticity of many
elastomeric materials in a compact, accurate, and physically meaningful way [9–15]. Such viscoelastic behavior should be
present in many types of elastomeric isolators and hydraulic bushings. In particular, the approach of the current article is
inspired, in part, by the prior work of Sjoberg and Kari [11] who combined nonlinear elasticity, fractional viscoelasticity,
and smoothened dry friction damping to mimic the dynamic behavior of a carbon black filled rubber isolator. Instead, the
focus of this article will be on the damping effects of elastomeric materials on certain fluid system elements in a typical
hydraulic bushing that is commonly employed in vehicle suspension systems [16,17].

2. Problem formulation

The scope of this article is on a class of production grade hydraulic bushings that is schematically described via a baseline
lumped parameter system model in Fig. 1; it is equivalent to the formulation of [1]. Steady-state sinusoidal excitation and
transmitted force response are used to estimate the dynamic stiffness ~K in the example case used in [1]. Fig. 1 shows a sche-
matic of the component split into two parallel force transmission paths, where xðtÞ ¼ ðxa=2Þ sinð2pXtÞ is the inner sleeve’s
displacement excitation, with peak-to-peak amplitude xa and frequency X with units of Hz. The forces transmitted to the
outer sleeve through the rubber and fluid paths are denoted Fr and Ff , respectively. Here, p1 and p2 represent the dynamic
pressures in each pumping chamber, while qi denotes the volume flow rate in the inertial track. The fluid resistance and iner-
tance of the inertia track are given by Ri and Ii, and Cf is the fluid compliance of the pumping fluid, uniform in both chambers.
The effective pumping area of the inner sleeve is given by Ax. Finally, the rubber path stiffness is denoted kr , with rubber path
damping force defined in a function form as grðx; _xÞ. Typically, viscous damping would be employed, implying that
grðx; _xÞ ¼ gr _x, where gr is the viscous damping coefficient.

The governing equations of the fluid system are given by the continuity equations for each pumping chamber,

Cf _p1ðtÞ ¼ Ax _xðtÞ � Ac _y1ðtÞ � qiðtÞ; ð1aÞ

Cf _p2ðtÞ ¼ �Ax _xðtÞ � Ac _y2ðtÞ þ qiðtÞ; ð1bÞ
and the momentum equation for the inertial track,

Ii _qiðtÞ ¼ p1ðtÞ � p2ðtÞ � RiqiðtÞ: ð1cÞ
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Fig. 1. Schematic of the hydraulic bushing where the (a) fluid path and (b) rubber path subsystems correspond to the analysis of prior work [1]. Here, xðtÞ is
the inner sleeve’s displacement excitation while Fr and Ff are the forces transmitted to the outer sleeve through the rubber and fluid paths, respectively. The
pressures in each pumping chamber are denoted by p1 and p2, and qi is the volume flow rate in the inertial track. The fluid resistance and inertance of the
inertia track are given by Ri and Ii , and Cf is the combined fluid compliance of the pumping fluid and each chamber. Ax is the effective pumping area of the
inner sleeve. The rubber path stiffness is denoted kr , with damping force grðx; _xÞ.
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