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a b s t r a c t

The algebraic connectivity of the graph Laplacian plays an essential role in various multi-agent control
systems. In many cases a lower bound of this algebraic connectivity is necessary in order to achieve a
certain performance. Lately, severalmethods based on distributed Power Iteration have been proposed for
computing the algebraic connectivity of a symmetric Laplacian matrix. However, these methods cannot
give any lower bound of the algebraic connectivity and their convergence rates are often unclear. In this
paper, we present a distributed algorithm for estimating the algebraic connectivity for undirected graphs
with symmetric Laplacian matrices. Our method relies on the distributed computation of the powers
of the adjacency matrix and its main interest is that, at each iteration, agents obtain both upper and
lower bounds for the true algebraic connectivity. Both bounds successively approach the true algebraic
connectivity with the convergence speed no slower than O(1/k).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The diverse applications of multi-agent systems, e.g., sensor fu-
sion, flocking, formation, or rendezvous (Olfati-Saber, Fax, & Mur-
ray, 2007), have led to tremendous research interest in the past
decade. A typical multi-agent system is a network of cooperative
agents targeting a collective aim using the distributed control de-
sign and local information exchange. An underlying communica-
tion graph is thus naturally associated with any given multi-agent
network. The second smallest eigenvalue of the Laplacianmatrix of
this graph, known as the algebraic connectivity, plays an important
role in various multi-agent applications and in many cases serves

✩ A preliminary version of thiswork appears in Aragues et al. (2012). Thematerial
in this paper was partially presented at the 2012 American Control Conference
(ACC2012), June 27–29, 2012, Montreal, Canada. This paper was recommended for
publication in revised form by Associate Editor Tamas Keviczky under the direction
of Editor Frank Allgöwer.
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as a fundamental performance measure (Bullo, Cortés, & Martínez,
2009).

The magnitude of the algebraic connectivity determines the
connectivity of the communication graph. We first remark
some efforts in the literature on maintaining or computing
the connectivity of the graph. Control laws for rendezvous and
formation control that keep the initial topology have been pro-
posed in Dimarogonas and Johansson (2010) and Ji and Egerstedt
(2007). Then in Zavlanos and Pappas (2005), it was shown how to
compute the k-hop connectivity matrix of the graph in a central-
ized fashion. Several distributed methods were then proposed on
computing spanning subgraphs (Zavlanos & Pappas, 2008), speci-
fying Laplacian eigenvectors (Qu, Li, & Lewis, 2011), estimatingmo-
ments of the Laplacian eigenvalue spectrum (Preciado, Zavlanos,
Jadbabaie, & Pappas, 2010), ormaximizing the algebraic connectiv-
ity throughmotion control (Simonetto, Keviczky, &Babuska, 2011).

How to estimate the value of this algebraic connectivity be-
comes an intriguing problem for the study of multi-agent net-
works. In Franceschelli, Gasparri, Giua, and Seatzu (2009), the
Laplacian eigenvalues were estimated by making the agents exe-
cute a local interaction rule that makes their states oscillate at fre-
quencies corresponding to these eigenvalues and then agents use
the Fast Fourier Transform (FFT) on their states to identify these
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Table 1
Notation.

n Number of agents.
i, j Agent indices.
k Iteration, k ∈ N.

Special matrices and vectors
I Identity matrix.
0, 1 Vectors with all entries equal to 0 and 1.
A Adjacency matrix of the graph.
L Laplacian matrix, L = diag(A1) − A.
D Perron matrix D = I − βL.
C Deflated matrix, C = D − 11T /n.

Matrix operations, eigenvalues and eigenvectors
Aij, [A]ij (i, j) entry of matrix A.
diag(b1, . . . , br ) matrix A with Aii = bi and Aij = 0.
λi(A) ith eigenvalue of A.
vi(A) ith eigenvector of A.
λ⋆(L) Algebraic connectivity.
∥A∥∞ Induced ∞-norm, maxi

n
j=1 |Aij|.

∥A∥2 Spectral norm, maxi


λi(ATA).
ρ(A) Spectral radius, maxi |λi(A)|.

eigenvalues. A framework for computing the algebraic connectivity
was then introduced in Montijano, Montijano, and Sagues (2011)
by iteratively bisecting the interval where it is supposed to belong
to. Most of the remaining Laplacian spectra estimation solutions
relied on the Power Iteration method or variations (De Gennaro
& Jadbabaie, 2006; Kempe & McSherry, 2008; Li & Qu, 2013; Ore-
shkin, Coates, & Rabbat, 2010; Sabattini, Chopra, & Secchi, 2011;
Yang et al., 2010). Power Iteration (Householder, 1964) selects an
initial vector and then repeatedlymultiplies it by amatrix and nor-
malizes it. This vector converges to the eigenvector associated to
the leading eigenvalue (the one with the largest absolute value).
The original matrix can be previously deflated so that a particular
eigenvalue becomes the leading one. The distributed implementa-
tions of the power iteration method let each agent maintain one
entry of the state vector. The operations that require global knowl-
edge (normalization and deflation) are usually replaced with aver-
aging iterations, as in Sabattini et al. (2011) and Yang et al. (2010)
for continuous-time systems, and in De Gennaro and Jadbabaie
(2006) and Li andQu (2013) for discrete-time systems. A brief sum-
mary of the power iteration method can be found in Appendix.

Most of these existing algebraic connectivity estimation meth-
ods have asymptotic convergence. However, in order to combine
in parallel these methods with some other algorithms or control
laws that require the knowledge of the algebraic connectivity, it
is necessary to have accurate lower and upper bounds as well as
the convergence rate of the algebraic connectivity estimation algo-
rithms (see, e.g., Seyboth, Dimarogonas, & Johansson, 2013), which
are typically missing in the literature (Oreshkin et al., 2010; Sabat-
tini et al., 2011; Yang et al., 2010).

In this paper, we present an alternative distributed method
for computing the algebraic connectivity (Section 3), whose main
interest is that it provides upper and lower bounds for the true
algebraic connectivity at each iteration.Weprove that both bounds
converge to the true algebraic connectivity, with a convergence
speed no slower than O(1/k).

2. Preliminaries

We use the notation defined in Table 1.
Consider a set of n ∈ N agents with indices i ∈ {1, . . . , n}. The

agents can exchange information with nearby nodes. This infor-
mation is represented by an undirected graph G = (V, E), where
V = {1, . . . , n} are the agents, and E are the edges. There is an
edge (i, j) ∈ E between nodes i and j if they can exchange data. We
assume that G is connected. We use Ni for the set of neighbors of
a node i with whom i can exchange data, Ni = {j | (i, j) ∈ E}, and

we let di be the degree of node i defined as the cardinality ofNi, and
dmax = maxi∈V di. We say an n × n matrix C is compatible with G
if Cij = 0 iff (i, j) ∉ E for j ≠ i; we let the elements in the diag-
onal Cii be either equal or different from 0. The adjacency matrix
A ∈ {0, 1}n×n of G is

Aij = 1 if (i, j) ∈ E, Aij = 0 otherwise, for i, j ∈ V.

The LaplacianmatrixL ∈ Rn×n ofG is the positive-semidefinite
matrix

L = diag(A1) − A, (1)

where 1 is as in Table 1. Note that the same LaplacianL is obtained
for graphs with (i, i) ∈ E and without (i, i) ∉ E self-loops. Both
A and L are compatible with the graph. We sort the eigenvalues
λi(L) of L as follows,

λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L).

The Laplacian matrix L has the following well known properties,
see e.g., Olfati-Saber et al. (2007): (i) its eigenvalues are upper
bounded by λn(L) ≤ 2dmax; (ii) it has an eigenvector v1(L) =

1/
√
n with associated eigenvalue λ1(L) = 0, L1/

√
n = 0; and

(iii) when G is connected, all the other eigenvalues are strictly
greater than zero.

The algebraic connectivity of G denoted by λ⋆(L) is defined as
the second-smallest eigenvalue λ2(L) of the Laplacian L. Usually,
the distributed algorithms that estimate the algebraic connectiv-
ity have asymptotic convergence, i.e., if we let λ̂i(k) be the esti-
mated algebraic connectivity after k iterations of the algorithm,
then limk→∞ λ̂i(k) = λ⋆(L), but for a finite k, we have λ̂i(k) ≠

λ⋆(L). If we do not know how λ̂i(k) approaches λ⋆(L), then the
selection of the number of steps k and the adjust of a parameter α
satisfying α < λ⋆(L) are non-trivial. Instead, if we know that our
estimate approaches λ⋆(L) satisfying λ̂i(k) ≤ λ⋆(L) for all k, then
we can just choose α < λ̂i(k) ≤ λ⋆(L) at any step k.

Problem 2.1. Our goal is to design distributed algorithms to allow
the agents to compute λ⋆(L), and/or a lower bound of λ⋆(L) in a
distributed fashion. �

From now on, we let C be the following deflated version of
the Perron matrix of the Laplacian L, (Aragues, Shi, Dimarogonas,
Sagues, & Johansson, 2012; Olfati-Saber et al., 2007; Xiao & Boyd,
2004; Yang et al., 2010)

C = I − βL − 11T/n, (2)

where the eigenvalues λ1(L), . . . , λn(L) of the Laplacian and of C
are related by

λ1(C) = 0, λi(C) = 1 − βλi(L), for i ∈ {2, . . . , n},

so that the spectral radius ρ(C) of C is associated to the algebraic
connectivity λ⋆(L) by

λ⋆(L) = (1 − ρ(C))/β, if 0 < β < 1/λn(L). (3)

We let D be the not-deflated matrix,

D = I − βL, so that C = D − 11T/n. (4)

3. Distributed computation of the algebraic connectivity

We present a distributed method for estimating the algebraic
connectivity λ⋆(L) of an undirected graph, which is not only
convergent but also provides lower and upper bounds at each step
k. We begin with a brief summary of the method, which is then
discussed in detail along this section. The method computes the
spectral radius of the deflated matrix C , which is related to the
Laplacian L by Eqs. (2), (3). Agents compute the induced ∞-norm
∥ · ∥∞ of matrix Ck, which is the maximum absolute row sum of
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