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a b s t r a c t

We consider sensor transmission power control for state estimation, using a Bayesian inference approach.
A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communi-
cation channel with random data packet drops. As related to packet dropout rate, transmission power is
chosen by the sensor based on the relative importance of the local state estimate. The proposed power
controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a
closed-form solution of the expected state estimation error covariance. Comparisons with alternative
non-data-driven controllers demonstrate performance improvement using our approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless networked systems have a wide spectrum of appli-
cations in smart grid, environment monitoring, intelligent trans-
portation, etc. State estimation is a key enabling technology where
the sensor(s) and the estimator communicate over a wireless
network. Energy conservation is a crucial issue as most wireless
sensors use on-board batteries which are difficult to replace and
typically are expected towork for yearswithout replacement. Thus
power control becomes crucial. In this work, we consider sen-
sor transmission power control for remote state estimation over
a packet-dropping network. Transmission power control in state
estimation scenario has been considered from different perspec-
tives. Some works took transmission costs as constant. Shi and
Xie (2012) assumed sensors to have two energy modes, allowing
it to send data to a remote estimator over an unreliable channel
either using a high or low transmission power level. The optimal
power controller is to minimize the expected terminal estimation
error at the remote estimator subject to an energy constraint. Sim-
ilar works can also be found in Imer and Basar (2005) and Xu and

✩ The work of J. Wu, Y. Li and L. Shi is supported by a HK RGC GRF grant 618612.
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Andrey V. Savkin
under the direction of Editor Ian R. Petersen.

E-mail addresses: jfwu@ust.hk (J. Wu), yliah@ust.hk (Y. Li), dquevedo@ieee.org
(D.E. Quevedo), eeknlau@ust.hk (V. Lau), eesling@ust.hk (L. Shi).

Hespanha (2004). Meanwhile, some literature has taken channel
conditions into account. Quevedo, Ahlén, and Østergaard (2010)
studied state estimation over fading channels. They proposed a
predictive control algorithm, where power and cookbooks are de-
termined in an online fashion based on the undergoing estimation
error covariance and the channel gain predictions. More related
works can been seen in Leong andDey (2012), Nourian, Leong, Dey,
and Quevedo (2014) and Quevedo, Ahlén, Leong, and Dey (2012).

An important issue which has not been taken seriously in most
works is that the transmission power assignment, as a tool to con-
trol the accessibility of information to the receiver, should be de-
termined not only by the underlying channel condition and the
desired estimation performance, but also by the transmitted infor-
mation itself. In Leong and Dey (2012) and Quevedo et al. (2010),
the authors failed to associate transmission power with data to
be sent. The plant states are used to determine the transmission
power in Gatsis, Ribeiro, and Pappas (2013). In this case, lost pack-
ets signal the receiver of the state information. To avoid computa-
tion difficulty, the signaling information is discarded.

In this paper, we focus on how to adapt the transmission power
to themeasurements of plant state and how to exploit information
contained in the lost packets. We propose a data-driven power
controller, which utilizes different transmission power levels to
send the local estimate according to a quadratic function of a
key parameter called ‘‘incremental innovation’’ which is evaluated
by the sensor at each time slot. By doing this, even when data
dropouts occur, the remote estimator can utilize the additional
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signaling information to refine the posterior probability density of
the estimation error by a Bayesian inference technique (see Box &
Tiao, 2011), therefore deriving theMMSE estimate. It compensates
the deteriorated estimation performance caused by packet losses.
To facilitate analysis, we assume that a baseline power controller
has already been established based on different factors with
regard to different settings, such as the requirement of estimation
performance as in Shi and Xie (2012) or the channel conditions
as in Leong and Dey (2012) and Quevedo et al. (2012, 2010). We
are devoted to developing a power controller that embellishes
this baseline controller by adapting the transmission power to the
measurements such that the averaged power with respect to all
possible values taken by the measurements does not exceed that
of the baseline power controller. The proposed power controller,
driven by onlinemeasurements, can run on top of non-data-driven
power controllers, which results in hierarchical power control
mechanisms. Then extension to a time-varying power baseline is
established in Section 4.4. Note that a related controller was first
proposed in Li, Quevedo, Lau, and Shi (2013), but as a special case of
the controller in this work. The main contributions of the present
work are summarized as follows.
(1) We propose a data-driven power control strategy for state es-

timation with packet losses, which adapts the transmission
power to the measured plant states.

(2) We prove that the proposed power controller preserves Gaus-
sianity of the local innovation. It simplifies derivation of the
MMSE estimate and leads to a closed-form expression of the
expected state estimation error covariance.

(3) We present a tuning method for parameter design. Despite its
sub-optimality, the controller is shown to perform not worse
than an alternative non-data-driven one.

The remainder of this paper is organized as follows. In Sections 2
and 3, we give mathematical models of the considered system and
introduce the data-driven transmission power controller. In Sec-
tion 4, we present the MMSE estimate at the remote estimator and
a sub-optimal power controller that minimizes an upper bound
of the remote estimation error. In Section 5, comparisons with
alternative non-data-driven controllers demonstrate performance
improvement using our approach. Section 6 presents concluding
remarks.
Notation: N (and N+) is the set of nonnegative (and positive) inte-
gers. Sn

+
is the cone of n by n positive semi-definite matrices. For

a matrix X , λi(X) is the ith smallest nonzero eigenvalue. We abuse
notations det(X) and X−1, which are used, in case of a singular ma-
trix X , to denote the pseudo-determinant and the Moore–Penrose
pseudoinverse. δij is the Dirac delta function, i.e., δij equals 1 when
i = j and 0 otherwise. The notation pdf(x, x) represents the prob-
ability density function (pdf) of a random variable x taking value
at x.

2. State estimation using a smart sensor

Consider a linear time-invariant (LTI) system:
xk+1 = Axk + wk, (1)
yk = Cxk + vk, (2)
where k ∈ N, xk ∈ Rn is the system state vector at time k, yk ∈ Rm is
the measurement obtained by the sensor, the state noise wk ∈ Rn

and observation noise vk ∈ Rm are zero-mean i.i.d. Gaussian noises
with E[wkw

′

j] = δkjQ (Q ≽ 0), E[vk(vj)
′
] = δkjR (R ≻ 0),

E[wk(vj)
′
] = 0 ∀j, k ∈ N. The initial state x0 is a zero-mean Gaus-

sian random vector with covariance Π0 ≽ 0 and is uncorrelated
with wk and vk. (A, C) is assumed to be detectable and (A,Q 1/2) is
assumed to be stabilizable. Furthermore, we assume A is Hurwitz. 1

1 Since we focus on remote state estimation in this paper, for any practically
working systems (to be monitored alone), A has to be Hurwitz. Otherwise, the

2.1. Sensor local estimate

Hovareshti, Gupta, and Baras (2007) illustrated that utilization
of the computation capabilities of wireless sensors may improve
the system performance significantly. Equipped with such ‘‘smart
sensors’’, the sensor locally runs a Kalman filter to produce the
MMSE estimate x̂sk of the state xk based on all the measurements
collected up to time k, i.e., y1:k , {y1, . . . , yk}, and then transmits
its local estimate to the remote estimator. Denote the sensor’s local
MMSE state estimate, the corresponding estimation error and error
covariance as x̂sk, e

s
k and P s

k , respectively, i.e., x̂
s
k , E[xk|y1:k], esk ,

xk − x̂sk and P s
k , E[(xk − x̂sk)(xk − x̂sk)

′
|y1:k]. Standard Kalman

filtering analysis suggests that these quantities can be calculated
recursively (cf., Anderson & Moore, 1979), where the recursion
starts from x̂s0 = 0 and P s

0 = Π0 ≽ 0. Since P s
k converges

to a steady-state value exponentially fast (cf., Anderson & Moore,
1979), we assume that the sensor’s local Kalman filter has entered
the steady state, that is, P s

k = P ≽ 0∀k ∈ N, This assumption
simplifies our subsequent analysis and results, such as Theorem4.8
and Proposition 4.17.

2.2. Wireless communication model

The data are sent to the remote estimator over an Additive
White Gaussian Noise (AWGN) channel using the Quadrature
Amplitude Modulation (QAM) whereby x̂sk is quantized into K bits
and mapped to one of 2K available QAM symbols.2 For simplicity,
the following assumptions are made:
A.1: The channel noise is independent of wk and vk.
A.2: K is large enough so that quantization effect is negligible

when analyzing the performance of the remote estimator.
A.3: The remote estimator can detect symbol errors.3 Only the

data arriving error-free are regarded as being successfully
received; otherwise they are regarded as dropout.

These assumptions are commonly used in communication and
control theories (cf., Fu&de Souza, 2009, Gatsis et al., 2013, Leong&
Dey, 2012, Quevedo et al., 2010 and Sinopoli et al., 2004). For exam-
ple, Fu andde Souza (2009) demonstrated that the estimation qual-
ity improvement (in terms of reduction of the remote estimation
error) achieved by increasing the numberK of the quantization bits
is marginal when K is sufficiently large (in their example K only
needs to be greater or equal to 4. Based on A.3, the communication
channel can be characterized by a random process {γk}k∈N+

, where

γk =


1, if x̂sk arrives error-free at time k,
0, otherwise,

initialized with γ0 = 1. Denote γ1:k , {γ1, . . . , γk}. Let ωk ∈

[0, +∞) be the transmission power for the QAM symbol at time
k. We adopt the wireless communication channel model used in
Li et al. (2013), and have Pr (γk = 0|ωk) = qωk , where q is given
by q , exp(−α/(N0W )) ∈ (0, 1), N0 is the AWGN noise power
spectral density, W is the channel bandwidth, and α ∈ (0, 1] is a
constant that depends on the specific modulation being used. To
send local estimates to the remote estimator, the sensor chooses
from a continuum of available power levelsωk > 0, see Fig. 1. Note
that different power levels lead to different dropout rates, thereby
affecting estimation performance.

system state will go unbounded and there is no real sensing device which can track
an unbounded state trajectory. Adding a control input to regulate the system state
for an unstable A and studying its associated stability issuewill be beyond the scope
of this paper and will be left as our future work.
2 QAM is a commonmodulation schemewidely used in IEEE 802.11g/n as well as

3G and LTE systems, due to its high bandwidth efficiency.
3 In practice, symbol errors can be detected via a cyclic redundancy check (CRC)

code.
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