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a b s t r a c t

The problem of identifying a single global model for stochastic dynamical systems oper-
ating under different conditions is considered within a novel Functionally Pooled (FP)
identification framework. Within it a specific value of a measurable scheduling variable
characterizes each operating condition that has pseudo–static effects on the dynamics.
The FP framework incorporates parsimonious FP models capable of fully accounting for
cross correlations among the operating conditions, functional pooling for the simulta-
neous treatment of all data records, and statistically optimal estimation. Unlike seemingly
related Linear Parameter Varying (LPV) model identification leading to suboptimal accu-
racy in this context, the postulated FP model estimators are shown to achieve optimal
statistical accuracy. An application case study based on a simulated railway vehicle under
various mass loading conditions serves to illustrate the high achievable accuracy of FP
modelling and the improvements over local models employed within LPV–type identifi-
cation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many dynamical systems operate under different conditions that significantly affect their dynamics. Oftentimes, the
operating conditions are characterized by one or more measurable variables and remain constant or vary slowly over time,
thus having a pseudo-static effect on the dynamics. Typical examples include structural systems vibrating under different
loading conditions, such as bridges, sea vessels and trains [1,2], structures vibrating under different environmental (for
instance temperature) or boundary conditions [3,4], rotating machinery dynamics under different speeds [5], aircraft
dynamics at various altitudes or flight conditions [6,7], and many more.
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In such cases the problem of identifying a single global model of the system, that is a model capable of representing the
dynamics under any operating condition based on available excitation-response signal pairs, each one corresponding to a
sample operating condition, is of particular interest and the subject of the present study.

This problem is typically tackled via Linear Parameter Varying (LPV) models [5,8,9]. These are dynamical models with
parameters expressed as functions of the measurable variable(s) – referred to as the scheduling variable(s) – designating the
operating condition. In this context model identification is based on the so–called local approach [10–12], the rationale of
which is simple and is based on a two-step approach that effectively splits the problem into two distinct subproblems: First
a number of local (or else frozen) models – each corresponding to a single operating condition for which excitation-response
signal pairs are available – are identified using conventional identification techniques [13, ch. 7] (step 1). Second, the
identified models are interpolated, typically using orthogonal interpolation functions, in order to provide a single global
model [12, pp. 250–251], [14,15] (step 2).

This approach seems reasonable, as a straightforward extension of classical identification. Yet, when viewed within a
stochastic framework in which the excitation-response signals are stochastic, it leads to suboptimal accuracy. The intuitive
explanation for this is simple, and may be readily understood from the fact that the signal pairs are not treated as a single
entity, but rather in complete isolation of each other in the process of obtaining each local (conventional) model (step 1).
This not only neglects potential cross-correlations among the signal pairs, thus resulting into information loss, but addi-
tionally leads to an unnecessarily high number of estimated parameters,2 thus violating the principle of statistical parsimony
[13, p. 492] and further leading to increased estimation variance and thus reduced accuracy (lack of efficiency in statistical
terminology) [13, pp. 560–562]. To these one should also add the errors involved in the subsequent (step 2) interpolation of
the obtained local models when constructing the LPV (global) model. The end result is a final, global, LPV model char-
acterized by reduced – that is suboptimal – accuracy.

Recognizing the aforementioned problems that arise within a stochastic context, the present authors and their co-
workers have postulated a novel class of stochastic global models, referred to as Functionally Pooled (FP) models, for the proper
global representation of systems and the remedy of the aforementioned weaknesses [16,17]. The class of FP models
resembles the form of LPV models, with some of the important differences being that the signal pairs are treated as a single
entity, the number of estimated parameters is minimal, potential cross-correlations among the signal pairs are accounted
for, and the estimation is accomplished in a single step (instead of two subsequent steps) as necessary for achieving optimal
accuracy. The optimal achievable accuracy is analytically established as well.

The FP identification framework is based on three entities (also see Fig. 1):

Nomenclature1

Important Symbols

k scheduling variable
xk½t� excitation signal for the k operating condition
yk½t� response signal for the k operating condition
wk½t� model innovations for the k operating

condition
ek½t� one-step-ahead prediction error (residuals) for

the k operating condition
N normal distribution
na, nb AutoRegressive (AR) and eXogenous (X) orders
pa, pb dimensionality of AR and X functional sub-

spaces (equal to p if pa¼pb)
Ef�g statistical expectation
γwðk; lÞ innovations cross correlation between oper-

ating conditions k and l
σ2
wðkÞ innovations variance as a function of the

scheduling variable

ai;j, bi;j AR, X coefficients of projection
Gj(k) j basis function
θ coefficients of projection vector
θ augmented parameter vector including inno-

vations variance
M number of excitation-response signal pairs

used for FP-ARX identification
N signal length in samples for each individual

operating condition
B backshift operator (Bj � u½t� ¼ u½t� j�)
� Kronecker product
o subscript designating actual (true) system
plim
N-1

probability limit operator

-
d

convergence in distribution
-
p

convergence in probability
Covf�; �g covariance between two random quantities
o(x) function that tends to zero faster than x

1 Important Conventions
Bold-face upper/lower case symbols designate matrix/column-vector quantities, respectively.
Matrix transposition is indicated by the superscript T.
A functional argument in brackets designates function of an integer variable; for instance x½t� is a function of normalized discrete time (t ¼ 1;2;…). The

conversion from discrete normalized time to analog time is based on ðt�1ÞTs , with Ts standing for the sampling period.
A hat designates estimator/estimate of the indicated quantity; for instance θ̂ is an estimator/estimate of θ.
Tilde designates sample quantity; for instance ~σ 2 designates sample variance.
For simplicity of notation, no distinction is made between a random variable and its value(s).

2 Equal to the number of local models times the number of model parameters.
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