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a b s t r a c t

Least-Squares Support VectorMachines (LS-SVMs), originating from Statistical Learning and Reproducing
Kernel Hilbert Space (RKHS) theories, represent a promising approach to identify nonlinear systems via
nonparametric estimation of the involved nonlinearities in a computationally and stochastically attractive
way. However, application of LS-SVMs and other RKHS variants in the identification context is formulated
as a regularized linear regression aiming at the minimization of the ℓ2 loss of the prediction error. This
formulation corresponds to the assumption of an auto-regressive noise structure, which is often found
to be too restrictive in practical applications. In this paper, Instrumental Variable (IV) based estimation
is integrated into the LS-SVM approach, providing, under minor conditions, consistent identification of
nonlinear systems regarding the noise modeling error. It is shown how the cost function of the LS-SVM
is modified to achieve an IV-based solution. Although, a practically well applicable choice of the instru-
mental variable is proposed for the derived approach, optimal choice of this instrument in terms of the
estimates associated variance still remains to be an open problem. The effectiveness of the proposed IV
based LS-SVM scheme is also demonstrated by a Monte Carlo study based simulation example.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machines (SVMs) have been originally developed
as a class of supervised learning methods in stochastic learning
theory. Their original purpose was to provide efficient tools for
data analysis and pattern recognition in classification problems
and regression analysis (Schölkopf & Smola, 2002; Vapnik, 1998).
SVMs have had a paramount impact on the machine learning field
since their extension as a theoretical framework in that setting
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(Cristianini & Taylor, 2000). These methods also offer an at-
tractive, so-called non-parametric way of data-driven dynamic
modeling, i.e., system identification, especially in the nonlinear con-
text. In that context, these approaches are part of the data-driven
model learning avenue (Ljung, 2010; Pillonetto, Dinuzzo, Chen,
De Nicolao, & Ljung, 2014; Pillonetto, Quang, & Chiuso, 2011),
focusing on the paradigm of estimation of the targeted system
without posing prior assumptions on its dynamical nature or the
non-linearities involved. Most of the research interest regard-
ing identification with SVMs has been dedicated to nonlinear
block models so far, using various least-square SVM (LS-SVM) ap-
proacheswhere the original nonlinear estimation problem is posed
as a linear regression (Falck, Pelckmans, Suykens, & De Moor,
2009; Goethals, Pelckmans, Suykens, & DeMoor, 2005). In general,
LS-SVMs are particular variations of the original support vector
machine approach using a regularized ℓ2 loss function instead of
a so called ϵ-insensitive loss function on the prediction error of the
model. A particular advantage of expressing both the regulariza-
tion and the loss in the ℓ2 norm is that the solution of the corre-
sponding optimization problem is obtained by solving a system of
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linear equations and an attractive trade-off between regularization
bias and variance of the estimates is present (Goethals et al., 2005).
LS-SVMs are also related to Kriging (Krige, 1966) in geostatistics
and Gaussian processes (GPs) in machine learning, e.g., Frigola and
Rasmussen (2013) and Kocijan, Girard, Banko, and Murray-Smith
(2005), whose approaches can be seen as different variants of the
reproducing kernel Hilbert space (RKHS) theory based function es-
timators. The relation between these methods is analyzed in Pil-
lonetto et al. (2014) and Van Gestel et al. (2002).

A particular handicap of the variants of LS-SVMs (and also GPs)
is that the used linear regression form under the ℓ2 loss function
corresponds to the assumption that all disturbances affecting the
data-generating system can be expressed as a white noise distur-
bance on the equation error level, which can be seen as the as-
sumption of a nonlinear auto-regressive noise structure. Such an
assumption is often found to be too restrictive in practical applica-
tions. In the classical identification literature, significant research
efforts have been devoted to achieve consistent estimation in case
of rather general noise assumptions corresponding to the situa-
tions commonly encountered in practice (Ljung, 1999). To intro-
duce the same generality of noise structures, some steps have been
taken in the LS-SVM context such as the recurrent LS-SVM devel-
oped in Suykens and Vandewalle (2000) and the linear paramet-
ric noise model equipped SVM derived in Falck, Suykens, and De
Moor (2010). However, the classical results in identification high-
light that the chosen noise model, i.e., the assumed noise proper-
ties, plays an important role in the consistency of the estimates.
Therefore, in the light of a non-parametric prior-free modeling ob-
jective, the question rises why we should bound ourself to a pri-
ori specified noise assumptions, especially in the general nonlinear
context. For example, in the GPs related literature for LTI models,
consistency under general noise conditions is established by iden-
tifying the one-step-ahead predictor of the output, which, due to
linearity, allows factorization of high order linear regression based
estimates to obtain estimates of the process and the noise dynam-
ics without posing any priors on the noise (Pillonetto, Chiuso, & De
Nicolao, 2011). However, in the nonlinear case, the loss of linearity
of this predictor in the inputs and outputs prevents applicability of
this methodology, allowing consistency only under restrictive as-
sumptions, see Pillonetto et al. (2011). So, the important question
that rises is howwe can achieve similar generality in the nonlinear
case.

By turning to the classical results, we can find that variants
of linear regression based methods, e.g., instrumental variable (IV)
approaches, have been developed to cope with realistic assump-
tions on the noise without specifying a direct parametrization or
structure (Ljung, 1999). The strength of IV methods in the LTI case
has been found in delivering consistent estimates independently
of the chosen noise model assumption in a computationally at-
tractive way (Young, 2011). Therefore, to extend consistency of
non-parametric identification with LS-SVMs in the nonlinear case,
in this paper, we consider the idea of introducing the IV scheme
into the LS-SVM regression structure, which was first2 proposed
in Laurain, Zheng, and Tóth (2011). As a significant improvement of
the initial scheme described in Laurain et al. (2011), in this paper,
we provide a rigorous treatment of instrumental variables based
LS-SVMs and showing the applicability of IV based techniques both
in non-parametric identification and in regularized contexts. Fur-
thermore, this contribution not only preserves the computation-
ally attractive feature of the original approach by satisfying the

2 Note that IV has also been applied to nonlinear systems in Lundgren and Sjöberg
(2004). However, Lundgren and Sjöberg (2004) is not related to the current work as
it only applies a parametric IV method to identify local LTI models of a nonlinear
system around some operating conditions.

Mercer conditions, but also provides unbiased estimates under gen-
eral noise model structures/conditions; opening a large set of ap-
plication areas for data-driven nonlinear model learning.

The paper is organized as follows: the considered problem
setting and the motivation for improving the LS-SVM method are
discussed in Section 2. In Section 3, the optimization problem
associated with the IV-based, non-parametric model estimation
is introduced together with its solution. This is followed by
integrating the IV solution into the LS-SVM estimation scheme for
nonlinear dynamic systems resulting in the IV-SVM method. In
Section 4, the choice of the instrumental variables is discussed from
the variance point of view together with the selection of kernel
functions and tuning of the hyper parameters. To demonstrate the
advantages of the IV-SVM, a Monte Carlo study in Section 5 is
provided in which the identification of a nonlinear system under
colored noise is analyzed. Finally, conclusions and some future
directions of research are given in Section 6.

2. Problem description

To set the stage for the upcoming discussion, the considered
identification problem is defined in this section.

2.1. The data-generating system

As an objective of the identification scenario, the data-driven
estimation of a rather general class of nonlinear discrete-time
systems is considered. For the sake of simplicity of the upcoming
derivations, the system So is assumed to be single-input single-
output (SISO). The behavior of So is described by the following
difference equation

y(k) = fo(x(k))+ vo(k), (1)

where x(k) ∈ Rng is a vector which, in the present identification
context, is composed of the delayed values of the output and input
signals of So, y and u respectively:

x(k) = [y(k− 1) . . . y(k− na) u(k) . . . u(k− nb)]
⊤,

with ng = na + nb + 1. fo : Rng → R is assumed to be a
bounded nonlinear function belonging to the set of real square in-
tegrable functions L2(R�, R). vo(k) is considered as a zero-mean,
quasi-stationary stochastic noise process (not necessarily white),
independent of u. Note that the general structure of the system de-
fined by (1) can be used to describe usual block structures such as
Hammerstein and/or Wiener systems by a priori restrictions of the
structure of fo, e.g.:

y(k) =
na
i=1
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+ vo(k). (2)

Formulation of (1) in the multi-input multi-output (MIMO) case is
also available as shown in Goethals et al. (2005). Note that in case
vo = eo, where eo is white, (1) can be seen as a nonlinear auto-
regressivewith exogenous input (NARX)model (Sjöberg et al., 1995).

2.2. The modeling paradigm

To briefly discuss the concept behind the LS-SVM estimator
and to develop the motivations for the proposed extension of this
approach, let us consider the classical parametric estimation of (1),
in which the nonlinearity is assumed to have an expansion (e.g.,
see Bai, 1998):
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