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a b s t r a c t 

This paper proposes a bias-compensated normalized maximum correntropy criterion (BCNMCC) algorithm 

charactered by its low steady-state misalignment for system identification with noisy input in an impul- 

sive output noise environment. The normalized maximum correntropy criterion (NMCC) is derived from a 

correntropy based cost function, which is rather robust with respect to impulsive noises. To deal with the 

noisy input, we introduce a bias-compensated vector to the NMCC algorithm, and then an unbiasedness 

criterion and some reasonable assumptions are used to compute the bias-compensated vector. Taking ad- 

vantage of the bias-compensated vector, the bias caused by the input noise can be effectively suppressed. 

System identification simulation results demonstrate that the proposed BCNMCC algorithm can outper- 

form other related algorithms with noisy input especially in an impulsive output noise environment. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Recently, bias-compensated adaptive filtering algorithms 

(BCAFAs) [1–5] based on the unbiasedness criterion (UC) are paid 

attention to in several signal processing applications, such as 

channel estimation, echo cancellation, and system identification 

in a noisy input case, that is, a bias-compensated vector is intro- 

duced to reduce the bias caused by the input noise. In particular, 

the bias-compensated normalized least mean square (BCNLMS) 

algorithm is popular due to its simplicity and effectiveness [1,2] . 

In [3] , the bias-compensated affine projection algorithm (APA) 

was developed to reduce the performance degradation caused 

by highly correlated input. The bias-compensated normalized 

subband adaptive filter algorithm was proposed in [4] , which 

has better performance and does not require knowledge of the 

input-output variance ratio. The bias-compensated normalized 

least mean fourth (NLMF) was presented in [5] , which can offer 

a faster convergence rate and a lower steady-state misalignment. 

Furthermore, the BCNLMS with L 1 -norm was proposed in [6] to 

address the noisy input problem in sparse system identification. At 

present in [7,8] , the convergence analysis of the BCNLMS has been 
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performed. All the above BCAFAs have been successfully utilized to 

solve the noisy input problem in different applications. However, 

they are sensitive to output noise with impulsive characters. 

In order to improve the robustness with respect to output noise, 

some improved adaptive filtering algorithms (AFAs) have been pro- 

posed to eliminate the bad influence of the output noise in dif- 

ferent literatures [9–13] . Particularly, different kinds of AFAs based 

on maximum correntropy criterion (MCC) were developed [14–16] , 

such as sparse MCC [17] , diffusion MCC [18] , kernel MCC [19] and 

so on. Although the MCC based AFAs can improve the robustness 

in non-Gaussian signal processing, a noisy input case is however 

not considered in these solutions and thus they are sensitive to 

the scaling of input signals. 

Considering the drawbacks of the existing BCAFAs and the MCC 

based AFAs, we take the advantages of the UC and robust prop- 

erty of the MCC to develop a novel bias-compensated normalized 

MCC (BCNMCC) algorithm in this study in order to eliminate the 

influence of the input noise and the impulsive output noise. 

The rest of this paper is structured as follows. In Section 2 , the 

NMCC algorithm is briefly reviewed. In Section 3 , we develop the 

bias-compensated NMCC algorithm. In Section 4 , simulation exper- 

iments are conducted to demonstrate the performance of the new 

method. Finally, the paper is concluded in Section 5 . 
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2. Review of the NMCC algorithm 

For an adaptive filter under a common system identification (SI) 

framework, the desired signal is generally denoted by 

d(i ) = u 

T (i ) w 

o + v (i ) (1) 

where w 

o = [ w 

o 
1 
, w 

o 
2 
, . . . w 

o 
L 
] 
T 

denotes an unknown sy stem pa- 

rameter vector with L -tap to be estimated, and the perturba- 

tion signal v ( i ) is the output noise at time index i . u (i ) = 

[ u 1 (i ) , u 2 (i ) , . . . , u L (i )] 
T 

denotes the input vector. In [11] , the up- 

date of the MCC based AFA is given by 

w (i + 1) = w (i ) + μ exp (−e 2 (i ) 

2 σ 2 
) e (i ) u (i ) (2) 

where w (i ) = [ w 1 (i ) , w 2 (i ) , . . . w L (i )] 
T 

denotes the tap-coefficients 

vector of an adaptive filter which is employed to find an esti- 

mate of w 

o from the observed input-output data. μ is the step 

size and σ denotes the kernel bandwidth, which is a positive pa- 

rameter that induces a trade-off between convergence speed and 

steady-state accuracy. e (i ) = d(i ) − u 

T (i ) w (i ) denotes the i th in- 

stantaneous error. Considering the MCC and the idea of the nor- 

malized least mean square, the normalized MCC (NMCC) updating 

equation can be represented as 

w (i + 1) = w (i ) + μ exp (−e 2 (i ) 

2 σ 2 
) 

e (i ) u (i ) 

u 

T (i ) u (i ) + ε 
(3) 

where ε > 0 is a small constant positive parameter, which is to pre- 

vent the denominator from being divided by zero, and it can pro- 

vide a stable solution. 

3. Bias-compensated NMCC 

In this section, we focus on developing the bias-compensated 

NMCC algorithm based on UC and the NMCC algorithm in (3) for 

SI problem in a noisy input and output environment. Considering 

the input noise, we define the input vector as 

ū (i ) = u (i ) + η(i ) (4) 

where η(i ) = [ η(i ) , η(i − 1) , . . . η(i − L + 1)] 
T 

is the noise vector, 

and ηl ( i )( l ∈ [1, L ]) is with zero-mean Gaussian and variance δ2 . One 

can rewrite the filtered output error as 

ē (i ) = d(i ) − ū 

T (i ) w (i ) 

= d(i ) − (u (i ) + η(i )) 
T 

w (i ) 

= u (i ) 
T 

˜ w (i ) + v (i ) − η(i ) 
T 

w (i ) 

= e w 

(i ) + v (i ) − η(i ) 
T 

w (i ) (5) 

where e w 

(i ) = u 

T (i ) ̃  w (i ) is the priori error and the weight-error 

vector is denoted as ˜ w (i ) = w o − w (i ) . To compensate the bias 

caused by the input noise, we introduce a bias-compensation vec- 

tor B ( i ) into (5) , and replace u ( i ) and e ( i ) with ū (i ) and ē (i ) simul- 

taneously. The Eq. (5) is improved as 

w (i + 1) = w (i ) + μ f ( ̄e (i )) 
ē (i ) ̄u (i ) 

ū 

T (i ) ̄u (i ) + ε 
+ B (i ) (6) 

where f ( ̄e (i )) is a non-linear function of the estimation error, 

which is defined as 

f ( ̄e (i )) = exp 

(
− ē 2 (i ) 

2 σ 2 

)
= exp 

(
− ( e w 

(i ) + v (i ) − ηT (i ) w (i )) 
2 

2 σ 2 

)

(7) 

Then, combining (6) and the definition of the ˜ w (i ) , one can obtain 

˜ w (i + 1) = ˜ w (i ) − μ f ( ̄e (i )) 
ē (i ) ̄u (i ) 

ū 

T (i ) ̄u (i ) + ε 
− B (i ) (8) 

Now, we employ the unbiasedness criterion [2] in (9) to get the 

bias-compensated vector. 

E( ̃  w (i + 1) | ̄u (i ) ) = 0 whene v er E( ̃  w (i ) | ̄u (i ) ) = 0 (9) 

Taking expectation on both sides of (8) with the given ū (i ) and 

using criterion (9) , one can obtain 

E [ ̃  w (i + 1) | ̄u (i ) ] = 

E [ ̃  w (i ) | ̄u (i ) ] − μE 
[

f ( ̄e (i )) ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

]
− E [ B (i ) | ̄u (i ) ] 

(10) 

According to (9) and (10) , the following equation is obtained 

E [ B (i ) | ̄u (i ) ] = −μE 

[
f ( ̄e (i )) 

ē (i ) ̄u (i ) 

ū 

T (i ) ̄u (i ) + ε 
| ̄u ( i ) 

]
(11) 

In order to calculate the gradient of the BCNMCC algorithm, the 

following commonly-used assumptions [20,21] are given: 

Assumption 1. The signals v ( i ), η( i ), u ( i ) and ˜ w (i ) are statistically 

independent of each other, and η( i ) is of zero-mean. 

Assumption 2. The non-linear function of the estimation error 

f ( v ( i )), η( i ) and ē (i ) are statistically independent. 

To simplify the following analysis, we take the Taylor expansion 

of f ( ̄e (i )) with respect to e w 

(i ) − ηT (i ) w (i ) around v ( i ). Combining 

(5) one can obtain 

f ( ̄e (i )) ≈ f (v (i )) + f ′ (v (i ))[ e w 

(i ) − ηT (i ) w (i )] 

+ o 

[ 
[ e w 

(i ) − ηT (i ) w (i )] 
2 
] 

(12) 

From (11) , the following approximation can be obtained 

E 
[

f ( ̄e (i )) ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

]
≈ E 

[
f (v (i )) ē (i ) ̄u (i ) 

ū T (i ) ̄u (i )+ ε | ̄u (i ) 
]

+ E 
[

f ′ (v (i ))[ e w 

(i ) − ηT (i ) w (i )] ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

]
+ E 

[ 
o 

[ 
[ e w 

(i ) − ηT (i ) w (i )] 
2 
] 

ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

] (13) 

In the steady-state, the priori error e w 

( i ) converges to a 

small value which is ignorable with respect to the environ- 

mental noise when the step size is small [22] . Considering the 

Assumptions 1 and 2 , the second term of Eq. (13) becomes 

E 
[

f ′ (v (i ))[ e w 

(i ) − ηT (i ) w (i )] ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

]
≈ −E 

[
f ′ (v (i )) ηT (i ) w (i ) ē (i ) ̄u (i ) 

ū T (i ) ̄u (i )+ ε | ̄u (i ) 
]
=0 

(14) 

Similarly the third term of Eq. (13) is 

E 

[
o 

[ 
[ e w 

(i ) − ηT (i ) w (i )] 
2 
] 

ē (i ) ̄u (i ) 

ū 

T (i ) ̄u (i ) + ε 
| ̄u (i ) 

]
=0 (15) 

Combining (13) –(15) , and using Assumption 2 , we have 

E 
[

f ( ̄e (i )) ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

]
≈ E 

[
f (v (i )) ē (i ) ̄u (i ) 

ū T (i ) ̄u (i )+ ε | ̄u (i ) 
]

= E [ f (v (i )) | ̄u (i ) ] E 
[

ē (i ) ̄u (i ) 
ū T (i ) ̄u (i )+ ε | ̄u (i ) 

] (16) 

Considering the fact that ē (i ) = e (i ) − ηT (i ) w (i ) 

E 

[
ē (i ) ̄u (i ) 

ū 

T (i ) ̄u (i ) + ε 
| ̄u (n ) 

]
= 

E[ ̄e (i ) ̄u (i ) | ̄u (i ) ] 

ū 

T (i ) ̄u (i ) + ε 
(17) 

E [ ̄e (i ) ̄u (i ) | ̄u (i ) ] 

= E 
[
[ e (i ) − ηT (i ) w (i )][ u (i ) + η(i )] | ̄u (i ) 

]
= E [ e (i ) ̄u (i ) | ̄u (i ) ] + E [ e (i ) η(i ) | ̄u (i ) ] 

−E 
[
ηT (i ) w (i ) u (i ) | ̄u (i ) 

]
− E 

[
ηT (i ) w (i ) η(i ) | ̄u (i ) 

] (18) 
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