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a b s t r a c t 

This work is devoted to the problem of the decomposition of a non-stationary signal into modal com- 

ponents, for which a methodological approach based on diagonal time-dependent state space models is 

postulated. In particular, on this paper is shown that the response of a diagonal time-dependent state 

space models can be cast into a modal form characterized by time-dependent amplitudes and frequen- 

cies. Later, a Kalman filter based framework for non-stationary modal decomposition is built on the pre- 

viously discussed diagonal state space representations. The enhanced performance of the proposed meth- 

ods is demonstrated on a benchmark test consisting of three non-stationary modal components, and on 

the modal decomposition and denoising of a ElectroCardio Graphic signals from the QT database. The 

proposed methods constitute a reliable tool for on-line modal decomposition of multi-component non- 

stationary signals, with results comparable and even better than other state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Most real-life systems are characterized by time-dependent dy- 

namics, while their resulting dynamic response is non-stationary. 

The effective analysis of non-stationary signals requires appropri- 

ate representation methods capable of accurately describing the 

evolutionary signal dynamics [ 1 , Ch. 5],[ 2 , Ch. 1], [3] . Amongst 

the most recognizable representation methods of non-stationary 

signals are non–parametric Time–Frequency Representations (TFR) 

and Time–Scale Representations (TSR), where the non-stationary 

signal is characterized in terms of an infinite set of oscillatory com- 

ponents localized in both time and frequency [ 1 , Ch. 5],[ 4 , Ch. 2]. 

Modal representations, on the other hand, aim at representing a 

non-stationary signal by means of the superposition of a finite 

number of oscillatory components, referred to as modes . Unlike 

the stationary case where the amplitude and frequency of each 

mode are deemed constant, in the non-stationary case, each mode 

is associated with time-dependent amplitude and frequency values 

[5] . In contrast to TFR and TSR where representation is hinged on 

surfaces on the time-frequency plane, modal representations offer 

more compact representations of non-stationary processes, while 

facilitate the extraction of individual signal components. 
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The problem of calculating the modal representation of a given 

signal shall hereby be referred to as modal decomposition . In a 

modal representation, the signal may consist of a single modal 

component (thus called mono-component) or may be constructed 

from the superposition of several modal components (thus referred 

to as multi-component). The calculation of the modal decomposi- 

tion of a mono-component signal reduces to the calculation of the 

instantaneous frequency (IF), instantaneous phase (IP) and instanta- 

neous amplitude (IA) of the signal [6–8] . In addition, modal decom- 

position in the case of multi-component signals further requires 

the isolation of individual modal components and the estimation of 

their respective instantaneous modal parameters [7,8] . Main diffi- 

culties associated with the decomposition of multiple modal com- 

ponents stem from the precise localization and tracking of each 

evolutionary frequency trajectory in a noisy environment, espe- 

cially in the case of components with crossing frequencies or in 

the case of vanishing components. 

Among the most widely appraised modal decomposition meth- 

ods are those based on ridge extraction from TFRs or TSRs. In- 

deed, for noise-free mono-component signals the IF is located at 

the maximum of the TFR while the IA is associated with the value 

at the ridge [9] . Then, estimation of the IF of the modal compo- 

nent translates into the localization of the maximum in a TFR. 

Nonetheless, in noisy signals, IF estimates are noisy as well and 

often exhibit discontinuities. To this end, more specialized meth- 

ods based on curve extraction procedures, such as the Viterbi al- 
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gorithm, have been developed [6,8] . In multi-component signals, 

TFR-based modal decomposition may be achieved by the peeling 

method, where the most dominant modal component is extracted 

from the TFR and subsequently removed from the signal to extract 

other modal components [7,8,10] . Otherwise image processing al- 

gorithms are also available to extract and separate ridges on TFR 

images [11] . Nonetheless, these specialized TFR-based modal de- 

composition methods require heavy processing on time-frequency 

surfaces, while their performance is bound to the method of cal- 

culation of the TFR and a careful parameter selection. 

Other modal decomposition methods are based on different 

types of non–parametric non-stationary representations of the sig- 

nal. For instance, the Discrete Wavelet Transform (DWT) and re- 

lated filter–bank based methods attempt at separating the signal 

into frequency bands [12,13] . Otherwise, the Empirical Mode De- 

composition or Hilbert–Huang Transform aims at separating the sig- 

nal into various non-stationary orthogonal signal components re- 

ferred to as Intrinsic Mode Functions from which IA and IF estimates 

may be derived through the use of the Hilbert transform [5,13–16] . 

Other methods achieve a modal decomposition by eigen-analysis of 

the signal autocovariance matrix. Among these, Subspace Methods 

and the Karhounen–Loève Transform (also referred to as Principal 

Component Analysis, Proper Orthogonal Decomposition or Singu- 

lar Spectrum Analysis) are available [17–20] . A common problem 

of these methods is that often the resulting decomposition is char- 

acterized by modes that have no relation with physical features of 

the underlying system. Additionally, these methods cannot resolve 

effectively the cases of crossing or vanishing modes. 

Alternatively, it is possible to define a certain parametric struc- 

ture associated with a modal form of the signal of interest. A sim- 

ple example is formed by adaptive notch filters, whose central fre- 

quency and bandwidth is adaptively adjusted to the signal prop- 

erties, while their performance is defined by a forgetting factor, 

which sets a trade–off between the tracking accuracy and the es- 

timation error [21–23] . More powerful methods attempt at track- 

ing the IF and IA of a single modal component either by adap- 

tive tracking [24,25] , or by projecting their values into a functional 

basis [26] . The latter methods are hinged on non-linear optimiza- 

tion methodologies, and as a result their performance is driven by 

a correct choice of initial conditions to ensure convergence to a 

global maximum. In turn, the presence of noise will significantly 

affect the overall performance of these methods. 

Linear time-dependent state space representations and their 

properties may be used with the purpose of calculating modal 

decompositions of non-stationary signals. One of such methods 

is based on a particular type of block-diagonal state space rep- 

resentation, where each second–order block is associated with a 

modal component with specific IA and IF. In turn, each block is 

parametrized, through a non-linear relation, by the IF of the modal 

component. Then, a modal decomposition is achieved by joint es- 

timation of the state vector and the instantaneous frequency by 

means of the Extended Kalman Filter (EKF) or other non-linear 

state estimation methods. These methods are commonly referred 

to as Kalman Filter Frequency Trackers (KF-FT) [27–32] . Similarly, 

an equivalence transformation may be used to map the state 

space representation associated with a Time-dependent AutoRegres- 

sive (TAR) model of the signal of interest, into a diagonal state 

space representation, where each entry of the state vector of the 

diagonalized system is associated with a modal component, while 

the entries in the diagonal of the state matrix are associated with 

the IF of the respective modal components [33,34] . After having se- 

lected the number of modal components, state-space based modal 

decomposition methods can lead to on-line estimates of the IF, IA 

and the modal components on multi-component signals. In addi- 

tion, these methods can be modified for the case of vanishing com- 

ponents, by on-line adjustment of the number of modal compo- 

nents. 

This work is a further contribution towards the class of modal 

decomposition methods based on linear time-dependent state- 

space models. In particular, the main aim of this paper is to study 

the properties of the response of linear time-dependent state- 

space systems and to demonstrate how such a response can be 

associated with a modal representation by the use of equivalence 

transforms. In that sense, and in contrast to most recent stud- 

ies aiming at describing the response of a linear time-dependent 

system in terms of Instantaneous and Harmonic Frequency Re- 

sponse Functions [35,36] , the main contribution of this work is 

to show, through the use of equivalence transforms, that the re- 

sponse of a linear time-dependent state-space system may be char- 

acterized by the superposition of narrowband frequency compo- 

nents, which in the case of the natural response take the form 

of modal components with IA and IF associated with the instan- 

taneous eigenvalues of second-order time-dependent state-space 

blocks. Furthermore, the analysis undertaken in this work leads to 

a more general and yet simpler parametrization of second-order 

linear time-dependent state space blocks, which then can be used 

in combination with Kalman filters to yield accurate on-line esti- 

mates of multiple modal components and their respective IA and 

IF. Two estimation approaches are considered based either on Joint 

or Decoupled Kalman filter methods, which lead to the proposed 

Joint/Dual Kalman Filter Non-stationary Sinusoid Tracking (JKF-NST or 

DKF-NST) methods. The postulated JKF-NST and DKF-NST methods 

turn out to be a generalization of the well-known KF-FT method, 

with the main advantage being that the concurrent state and pa- 

rameter estimation problem involves a milder type of non-linearity 

compared to that one appearing in KF-FTs. 

A Monte Carlo analysis involving a three–component non- 

stationary signal with mode crossing and fading under noise, 

and the application on denoising of Electro-Cardio Graphic (ECG) 

records from the QT database, demonstrate the increased robust- 

ness of the proposed methods compared to the KF-FT method and 

the ridge extraction method described in [8] , in terms of tracking 

accuracy of the modal components and their IA and IF. Moreover, 

the theoretical results obtained from the analysis of linear time- 

dependent state space models may be further extended towards 

the design of improved modal decomposition methods. 

The paper is organized as follows: Section 2 provides the 

main terminology and definitions used throughout the work, 

Section 3 provides the main contributions of this work, where it is 

shown how the response of a complex diagonal state space system 

may be cast into a modal form, Section 4 introduces the second 

order block diagonal structures to be later used in Section 5 for 

estimation of modal decompositions via Kalman filter methods. 

Sections 6 and 7 show a performance analysis of the modal de- 

composition methods in the decomposition of a three component 

non-stationary signal featuring mode crossing and fading, and in 

the denoising of ECG records. Finally, the conclusions of this work 

are summarized in Section 8 . 

2. Time-dependent state space representations – main 

definitions 

Consider the (discrete-time) time-dependent state space repre- 

sentation: 

z[ t] = A [ t] · z[ t − 1] + b[ t] · u [ t] (1a) 

y [ t] = c[ t] · z[ t] + w [ t] , w [ t] ∼ NID 
(
0 , σ 2 

w 

)
(1b) 

where t ∈ Z 

+ is the normalized discrete time, y [ t] ∈ R is the re- 

sponse signal, z[ t] ∈ R 

M is the state vector , u [ t] ∈ R is the excitation 
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