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a b s t r a c t

Structured sparsity approaches have recently received much attention in the statistics,
machine learning, and signal processing communities. A common strategy is to exploit or
assume prior information about structural dependencies inherent in the data; the solution
is encouraged to behave as such by the inclusion of an appropriate regularisation term
which enforces structured sparsity constraints over sub-groups of data. An important
variant of this idea considers the tree-like dependency structures often apparent in
wavelet decompositions. However, both the constituent groups and their associated
weights in the regularisation term are typically defined a priori. We here introduce an
adaptive wavelet denoising framework whereby a sparsity-inducing regulariser is mod-
ified based on information extracted from the signal itself. In particular, we use the same
wavelet decomposition to detect the location of salient features in the signal, such as
jumps or sharp bumps. Given these locations, the weights in the regulariser associated to
the groups of coefficients that cover these time locations are modified in order to favour
retention of those coefficients. Denoising experiments show that, not only does the
adaptive method preserve the salient features better than the non-adaptive constraints,
but it also delivers significantly better shrinkage over the signal as a whole.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

A key attraction of wavelets is their compressive repre-
sentation of data. This is fundamental to powerful non-
linear processing methods such as wavelet shrinkage
[1–3]. Early approaches often regarded wavelet coeffi-
cients as statistically independent. Further developments,
however, showed that for many applications involving

real-world signals and images, performance improved
when the dependencies between coefficients were taken
into account [4–9]. Most of such methods typically
focussed on the persistency property which is often
apparent across wavelet scales. The simplest models
account for such statistical dependencies between parent
coefficients at a given level of the decomposition and their
child coefficients at the following level of finer resolution.
Although methods based on these models proved success-
ful in many applications such as denoising, compression,
and classification, some concerns remained about the
preservation of salient features in the signal, such as jumps
or sharp bumps [10]. In applications such as denoising or
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deconvolution these features are typically over-smoothed
which compromises the quality of the estimates. Some
attempts to improve performance under these conditions
explore total variation filtering [11,12], combined Tikhonov
and total variation regularisation [10] and decompositions
based on footprints of the discontinuities in the signal [13].

In this work we take advantage of the latest develop-
ments in regularised least-squares regression to promote
tree-structured sparsity on the denoised estimates. Unlike
previous tree-structured estimators [5,8,14–16], the
method proposed here uses a lasso-like algorithm with a
mixed-norm regulariser that induces structured sparsity
over an overcomplete representation. A novel signal-
driven approach is introduced to adapt the weights of
the regulariser. The ability of shift-invariant complex
wavelet transforms to detect salient features in the signal
is exploited to design a penalisation term which favours
estimated jumps or sharp bumps during the optimisation
process. We show that this results in a denoising approach
with better preservation of salient features.

The manuscript is organised as follows. In the remain-
der of the current section we provide motivation and
discuss the specific contributions of our work in the
context of the current literature. In Section 2 we offer an
overview of structured sparsity approaches and the dual-
tree complex wavelet transform. The proposed method is
introduced in Section 3. This considers both an oracle and
a practical approach to account for the occurrence of
salient features. In Section 4, results obtained in denoising
experiments show the advantage of the proposed adaptive
scheme over structured sparsity estimates set a priori. We
then close with the main conclusions and a discussion of
further work.

1.1. Motivation

Sparse representations have been at the core of many
signal processing methods in recent years [17,18]. Early
algorithms such as basis pursuit [19] and matching pursuit
[20] regarded coefficients as mutually independent, mean-
ing that each atom in the decomposition is selected
or discarded independently of its neighbours. In the signal
processing community, efforts to introduce structured
sparsity constraints were spurred by the compressed
sensing paradigm [21,22] which used prior knowledge
to reconstruct signals with fewer samples than classical
sampling theorems allowed. Model-based compressed
sensing has showed promise in this context [23–25]. These
early attempts, however, were based on non-convex or
greedy optimisation approaches. To achieve scalability
without compromising consistency, non-greedy convex
approaches are often desirable. To this end, regularised
approaches using mixed-norms have proven successful in
obtaining sparse estimates that retain an assumed depen-
dence structure [26,27].

It is important to note that most of the existing
wavelet/structured models deal with the persistency prop-
erty of the coefficients without taking into account any
additional information provided by the specific choice
of transformation or dictionary used to obtain the repre-
sentation [27–29]. Moreover, all of these dependence

structures are set a priori, and no further information
from the signal is used to adapt them. In denoising
applications, features with strong local high frequency
content are often over-smoothed by such methods.
This is due to the erroneous shrinkage or elimination of
coefficients at finer scale levels. On the other hand, when
regularisation parameters are set to favour data-fitting
much more than sparsity, the resulting estimates often
retain too many fine-scale coefficients and remain noisy.

1.2. Contribution

In this work, a new signal processing method is
developed that uses additional information, extracted
directly from the signal, to reinforce the a priori structured
sparsity constraints. To do so, we use the dual-tree com-
plex wavelet transform (DTCWT) as the sparsity inducing
transform together with a hierarchical mixed norm reg-
ulariser. The weights in the regulariser are adaptively
modified in order to help preserve salient features of the
analysed signal. This adaptive modification is driven by a
detection stage which aggregates information from the
different scales of the wavelet decomposition to infer
the locations of salient features in the signal. In this way,
the mixed norm regulariser, defined a priori, is tailored to
the observed signal.

1.3. Related work

Tree-structured estimators have been proposed earlier
for wavelet decompositions, both in the signal process-
ing and statistics communities [5,8,14–16]. They often
rely on orthonormal transforms and hard-thresholding
approaches. Following their success in machine learning
and statistics, generalised lasso-type algorithms have
received recent and growing attention for signal proces-
sing applications. The closest works are [29,30]. In [29], the
parent–child dependence of wavelet coefficients is coded
into overlapping groups, each of which comprises a
parent–child pair. A variable replication approach is taken
into account for different instances of a given coefficient
appearing in different groups and a regularisation term is
added to account for the dissimilarity of the replicates of
the same variable. Unlike the present work, their approach
uses the standard discrete wavelet transform (DWT) with-
out adding any additional information onto the structure
assumed a priori. In [30], a chain structure is assumed
to model the spectrogram of audio signals obtained from
their short-time Fourier transform representation. This
simple structure gives rise to a regularisation term that
is bounded above by a quantity which is simpler to
compute, allowing for an efficient minimisation–majorisa-
tion algorithm. It should be noted, however, that it is
suited for signals with emphasised band structures in their
spectrogram. On the other hand, edge information has
been used to aid image denoising [31] and reconstruction
under compressed sensing applications [32]. To the best of
our knowledge, however, such information has not been
used to adapt a structured regulariser as proposed here.
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