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a b s t r a c t

Recently, lots of work has been done on conditions of guaranteeing sparse signal recovery
using orthogonal matching pursuit (OMP). However, none of the existing conditions is
both necessary and sufficient in terms of the so-called restricted isometric property,
coherence, cumulative coherence (Babel function), or other verifiable quantities in the
literature. Motivated by this observation, we propose a new measure of a matrix, named
as union cumulative coherence, and present both sufficient and necessary conditions
under which the OMP algorithm can uniformly recover sparse signals for all sensing
matrices. The proposed condition guarantees a uniform recovery of sparse signals using
OMP, and reveals the capability of OMP in sparse recovery. We demonstrate by examples
that the proposed condition can be used to more effectively determine the recoverable
sparse signals via OMP than the conditions existing in the literature. Furthermore, sparse
recovery from noisy measurements is also considered in terms of the proposed union
cumulative coherence.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Orthogonal matching pursuit (OMP) as a canonical
greedy algorithm for signal approximation is frequently
used for sparse recovery in compressive sensing [1]. In
comparison with other sparse recovery algorithms, the major
advantage of OMP is its simplicity and easy implementation
[2,3]. Besides, OMP has very competitive performance in
recovering sparse signals [4], and has been investigated
extensively. Several variants of OMP, such as regularized
orthogonal matching pursuit (ROMP), compressive sampling

matching pursuit (CoSaMP), and subspace pursuit (SP), have
been proposed to further improve its performance [5–8].

A key theoretical issue of OMP is to determine the
condition on which OMP can uniformly recover sparse
signals. Recently, many conditions have been derived in
terms of the restricted isometric property (RIP) [2,9–12].
For example, it was proven that OMP can recover all k-sparse
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the restricted isometric constant (RIC) of order k . In addition
to RIC, coherence and cumulative coherence were also used
to build the condition for sparse recovery [1,3,4]. Particularly,
Tropp has investigated the convergence of OMP using
the cumulative coherence μ1ðkÞ, and shown that when
μ1ðk�1Þþμ1ðkÞo1, OMP can exactly recover all k -sparse
signals [3]. Tropp and Gilbert also used the coherence of a
random matrix to show the effectiveness of signal recovery
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from random measurements via OMP [4]. Following the
above-mentioned work, in this paper we aim to further
explore the condition of sparse recovery via OMP.

Although all the conditions mentioned above attempt
to better formulate the requirement for uniformly recover-
ing sparse signals via OMP, they are only sufficient, and
none of them is necessary. It means that according to these
conditions, only some k-sparse signals can be identified to
be uniformly recoverable by OMP. Our objective in this
paper is to present a sufficient and necessary condition for
uniformly recovering sparse signals via OMP in terms of a
new measurement called union cumulative coherence.
Specifically, by defining a union cumulative coherence
~μ1ðkÞ of a matrix or dictionary of order k, we prove that
~μ1ðkÞo1 is both sufficient and necessary for all sensing
matrices to exactly recover all k-sparse signals using OMP.
The distinct feature of the proposed condition is that it
adopts a verifiable measure, similar to the RIP constant,
coherence and cumulative coherence, to determine exactly
whether or not sparse signals can be uniformly recovered
via OMP for any sensing matrix. We demonstrate through
some examples that the new condition gives a much larger
sparsity bound of recoverable signals than the RIC based
conditions as mentioned above. Here, the sparsity bound
means the largest number of nonzero components of a
sparse signal. It is noted that, although a precise condition
of sparse recovery via OMP was presented in [3], it is not
very useful since there is not any technique for checking
when the condition holds as the author pointed out.
On account of this, Tropp introduced cumulative coher-
ence μ1 to give a sufficient condition as mentioned above.
Compared with the μ1 based condition, our new con-
dition is both sufficient and necessary for uniform recov-
ery of sparse signals via OMP uniformly for all sensing
matrices. As shown by examples, there exist matrices that
do not satisfy the cumulative coherence condition but still
satisfy our condition. Also, the union cumulative coher-
ence can be used to analyze the noisy recovery of sparse
signals, and a condition of reconstructing sparse signals
from noisy measurements is derived with the new
measure.

The idea behind the union cumulative coherence arises
naturally from the manner of identifying the indexes in the
support of a sparse signal in the OMP algorithm. The proof
of the new condition is straightforward. Unlike the coher-
ence and cumulative coherence, the union cumulative
coherence of a dictionary is the maximum of the sum of
two interrelated cumulative coherences: one is the cumu-
lative coherence between one atom ϕ and all the elements
in a collection T of atoms different fromϕ, and the other is
that between one atom and the others in T . They are
connected to each other by the common collection T . This
is the fundamental difference between the union cumulative
coherence and cumulative coherence. By such a refined
measure, we can develop a precise condition of uniformly
recovering sparse signals via OMP. It is worth mentioning
that, although most conditions of sparse recovery in the
literature were based on RIC, we can demonstrate by
examples that the RIC constant cannot be used to formulate
a precise measure that guarantees a uniform recovery of
sparse signals by OMP.

The rest of the paper is organized as follows. The OMP
algorithm is described briefly in Section 2. In Section 3, a
sufficient and necessary condition for uniform recovery of
sparse signals is presented. The sparse recovery with noisy
measurements is discussed in terms of the union cumula-
tive coherence in Section 4. Section 5 concludes the paper.

Notations: supp α¼ fi:αia0g is the support of a vector
α¼ ðαiÞ. For ΛDf1;…;Mg, jΛj denotes the cardinality of Λ,
and Λc ¼ f1;…;Mg\Λ is the set of all elements of f1;…;Mg
not contained in Λ. Φ¼ ðϕ1;…;ϕMÞ is a matrix consisting
of the column vectors ϕ1;…;ϕMARN . ΦΛ denotes a
submatrix of Φ that only contains columns indexed by
Λ. Φ† is the Moore–Penrose pseudoinverse of Φ, and ΦT

the transpose of Φ. For a square matrix A¼ ðaijÞ, det ðAÞ
denotes its determinant, and diag ða1;…; anÞ represents a
diagonal matrix with aij ¼ 0 for 1r ia jrn and aii ¼ ai for
1r irn. The inner product of vectors ϕ and ψ is written
as 〈ϕ;ψ〉.

2. Recovery of sparse signals using OMP

Given a vector α¼ ðα1;…;αMÞARM , α is called k-sparse
if jsupp αjrk. The recovery of sparse signals, or simply
sparse recovery, is to reconstruct a sparse vector α from
the noiseless measurement y¼Φα or noisy measurement
y¼Φαþε, whereΦ is an N �M matrix with NoM and ε
an independent noise. The basic idea of OMP is to
sequentially identify the columns of Φ participating in
the vector y. In principle, the algorithm selects the column
of Φ which is most strongly correlated with the remaining
part of y, and subtracts off the contribution of the chosen
column from the remaining part of y such that the residual
is orthogonal to all vectors chosen, and then iterates on the
residual. For a k-sparse signal α, if all the indexes of its
nonzero entries are correctly determined after at most k
iterations, OMP can exactly recover α from its noiseless
measurements.

Algorithm 1. OMP algorithm.
Input: measurement matrix Φ¼ ðϕ1 ;…;ϕMÞ, measurement vector

y, sparsity level k
Output: sparse signal α and its support Λ� f1;…;Mg
Initialize: Λ¼∅, yr ¼ y
Repeat : do steps (1)–(2) k times

(1) Find the index i such thati¼ arg max
mA f1;…;Mg

j〈yr ;ϕm〉j (if the
maximum occurs for multiple indices, choose one randomly)

(2) Update the index set and the residual:Λ¼Λ [ fig;
α¼ arg min

β
Jyr�ΦΛβJ ; yr ¼ yr�ΦΛα

(3) Let ~α ¼Φ†
Λy, αðiÞ ¼ ~αðiÞ for iAΛ and 0 for i=2Λ, 1r irM.

Since OMP is a stepwise forward selection algorithm,
the analysis of whether it correctly recovers sparse signals
can be concentrated on its each iteration. For any k-sparse
signal expressed as a linear combination of the k columns
of a matrix Φ, we only need to inspect the relation
between arbitrary k columns and any other one at each
iteration. It is obvious that if there is a condition that can
guarantee that OMP is able to correctly identify one index
in the support of any k-sparse vector at each iteration, then
it will ensure that OMP can uniformly recover k-sparse
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