Signal Processing 106 (2015) 174-183

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

SIGNAL

PROCESSING

Convergence analysis of a quadratic upper bounded TV
regularizer based blind deconvolution

@ CrossMark

M.R. Renu *!, Subhasis Chaudhuri, Rajbabu Velmurugan

Electrical Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India

ARTICLE INFO

ABSTRACT

Article history:

Received 5 July 2013
Received in revised form

8 April 2014

Accepted 20 June 2014
Available online 23 July 2014

Keywords:

Blind deconvolution
Total variation
Majorize-minimize
Alternate minimization
Convergence analysis

We provide a novel Fourier domain convergence analysis for blind deconvolution using
the quadratic upper-bounded total variation (TV) as the regularizer. Though quadratic
upper-bounded TV leads to a linear system in each step of the alternate minimization
(AM) algorithm used, it is shift-variant, which makes Fourier domain analysis impossible.
So we use an approximation which makes the system shift invariant at each iteration. The
resultant points of convergence are better - in the sense of reflecting the data - than those
obtained using a quadratic regularizer. We analyze the error due to the approximation
used to make the system shift invariant. This analysis provides an insight into how TV
regularization works and why it is better than the quadratic smoothness regularizer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In blind deconvolution a sharp image has to be obtained
from a single noisy and blurred observation without the
knowledge of the point spread function (PSF). The image
observation model is assumed to be a linear shift invariant
(LSI) system. The observed image gets corrupted due to noise
and blur. Conventional image restoration techniques assume
that the blur (PSF) is known, whereas in blind restoration the
PSF is taken as an unknown quantity and it is estimated
along with the original image.

Blind restoration is an ill-posed problem due to the
possibility of multiple solutions and due to the fact that
the solution changes by a large amount when there is a
small perturbation in the input, due to noise. An ill-posed
problem is converted to a well-posed problem using
regularizers [1]. A regularizer is an additional term added
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to the cost function to enforce certain conditions on the
acceptable solution, thereby reducing the solution space.
Commonly used regularization terms are the H'-norm
(quadratic) that enforces smoothness [2], TV norm [3,4]
that enables solutions which preserve edges, and wavelet
domain regularizer [5-7] which favors solutions with
sparse wavelet transforms since natural images are
claimed to have a sparse wavelet expansion.

The problem of blind deconvolution is a well studied
one, as can be seen from the numerous papers in the
image processing literature. Despite this, results on real
world images with large image and PSF sizes are rarely
satisfactory [8,9]. This is either due to the fact that most of
the iterative methods take a long time to converge to an
acceptable solution or due to the fact that non-iterative
methods do not work for all types of images and PSFs.
Most of the solutions given in the literature could be
classified as either iterative or non-iterative in nature.
Non-iterative methods of deconvolution, proposed in
[9,10] are limited in the sense that they could be applied
only for images which have a specific spectrum or for PSFs
which follow Levi distribution. Iterative methods of blind
deconvolution are more common [2,3,11-15] and are
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based on iterative procedures like alternate minimization
or expectation maximization. Use of total variation as a
regularizer for blind deconvolution is reported in [3,16].
A variational approach to blind deconvolution is given
in [17]. Sroubek and Flusser [18] propose a blind deconvo-
lution method in a multichannel framework, which is
applicable when multiple observations of a scene is avail-
able. In [19] a novel algorithm for blind deconvolution
from a pair of differently exposed images is reported.
Iterative methods do not assume any properties for the
image and use certain general constraints on the PSF, like
positivity and symmetry, and hence are applicable to a
wider variety of images and PSFs. While using iterative
methods it is necessary to check whether these methods
converge to a useful solution.

Few papers in the literature address the convergence of
iterative methods for blind deconvolution. The work by
Chambolle and Lions [20] analyzes the minimization
process for the case where the PSF is known. Figueiredo
and Bioucas-Dias [21] have studied the sufficiency condi-
tions for convergence in deconvolving Poissonian images,
with the PSF assumed to be known. For the blind decon-
volution case, the work by Chan and Wong [22] analyzes
the convergence of alternate minimization method for the
H! norm. With a Gaussian approximation to the TV
function, [17] shows that the blind deconvolution algo-
rithm converges.

In this paper, we consider a quadratic approximation of
TV as the regularizer, unlike in [3] where the TV without
any approximation is used as the image and PSF regular-
izer. Since the image and the PSF are both unknown, both
variables need regularization and TV may be used in both
the cases [3]. This leads to a cost function having three
terms - the quadratic data term and the total variations of
the image and the PSF. The data term contains the product
of the unknown image and the PSF, and TV is a nonlinear
function which results in a cost function that is non-linear
and non-convex. In order to arrive at an optimum solution
for the image and the PSF, we use the alternate minimiza-
tion (AM) method. In AM a solution is arrived at by
keeping one variable fixed and minimizing w.r.t. the other
variable, so that at each step the problem reduces to that of
a non-blind restoration. In [3], where TV is used as
regularizer for both the unknowns, variational approach
is used to solve the blind deconvolution problem. In a later
paper by Chan and Wong [22], a convergence analysis for
alternating minimization algorithm for blind deconvolu-
tion is reported. But the convergence analysis is restricted
to only H' norm as it could not be extended to the TV
norm. In the case of H' norm, an analysis is feasible since
in each step of the AM iteration, the cost function is
quadratic in nature, whereas for TV norm this is not true,
which makes an analysis difficult.

In order to do the convergence analysis we modify the
cost function by replacing the TV norm by its quadratic
upper bound, following the work of Figueiredo et al. [23].
In [23,24] the upper bounding is used, respectively,
for denoising and deconvolution with a known PSF. We
use the upper bounding for solving blind deconvolution
where the PSF is not known. Using the quadratic upper
bound for TV makes the cost function at each step of AM

quadratic in nature, though the overall cost function
remains non-quadratic. With this modification, we provide a
convergence analysis for blind deconvolution using alternate
minimization with TV as a regularizer. The convergence
analysis is done in the transform domain. Though approx-
imating TV by a quadratic function makes the solution process
linear at each iteration, the system to be solved is not shift
invariant. So we make a further approximation at each
iteration to make the system shift invariant. The convergence
points reached with these two approximations is better than
the convergence points obtained when a quadratic smooth-
ness regularizer is used. We obtain the error incurred due to
approximating the system as a shift invariant one. The error
analysis gives an insight into the regularization process when
TV is used as regularizer.

2. Deconvolution framework

The image formation model used is
y=Hx+n, )

where y and x are MN x 1 vectors obtained by lexicogra-
phically (i.e. converting the matrix to a vector by column
wise or row wise ordering; we have used row wise
ordering) ordering the M x N observed image y and the
original image x, respectively. The noise term n is a sample
of additive white Gaussian noise and H is the MN x MN
convolution matrix obtained from the point spread func-
tion (PSF) h of size P x Q. The PSF matrix is assumed to be
of much smaller size than the image. In most practical
cases, the PSF is non-negative and exhibits lateral or radial
symmetry. These properties of the PSF will be used as
constraints along with the constraint that PSF is normal-
ized to unity to prevent any shift in the mean of the image.

The problem of blind deconvolution aims at recon-
structing the original image x and the PSF h from the noisy
observation y. We propose to estimate x and h (PQ x 1
vector formed by lexicographically ordering h) using a
quadratic data term and a TV regularizer for both the
image and the PSF. The cost function is given as

C(x.h) = |ly —Hx||? + AxTV(x)+ 2, TV (h), )
subject to the constraints

h(m,n)=h(—m, —n), h(m,n)>0 vm,n
and Y Yh(m,n)=1,

which come from symmetry, positivity and mean invar-
iance, respectively. A, and A, are the image and PSF regu-
larization factors, respectively. Total variation of x, TV(x) is
defined as

TV(X) = X1/ (A7) +A]x, 3)

where A? and A; correspond to the horizontal and vertical
first order differences at each pixel location, i.e. Al'x = x; —X;
and A}x = x; —x; where x; and x, are the neighbors to left and
above, respectively, of x;. TV(h) is defined similarly. It should
be noted that (2) is highly nonlinear and this makes the
convergence analysis difficult. Figueiredo et al. [23,24] have
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