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a b s t r a c t

This paper proposes a new computational procedure for solving the optimal zero-forcing
beamforming problem in multiple antenna channels that maximizes user achievable rate
with restriction on the per-antenna element power constraints. An interior point method
with optimal step size procedure is developed in which the step size for the line search in
the Newton search direction is calculated exactly for each iteration. This significantly
enhances the efficiency associated with the line search. Design examples show that the
proposed algorithm converges rapidly to the optimal solution with low computational
complexity.

Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

The challenges of providing broadband services in the
rural area can be tackled through the utilization of a range
of communication techniques, which include advanced
adaptive multicarrier modulation and coding; QOS based
on cross-layer scheduling; and multi-user multiple-input
multiple-output (MU-MIMO) systems to increase spectral
efficiency. There has been much research on MU-MIMO in
multipath environments that naturally provide the chan-
nel diversity exploited by MU-MIMO [1–8].

In this paper we consider a MU-MIMO that uses a
reduced complexity linear precoding technique called zero
forcing beamformer (ZFBF) to serve multiple users [4–8].
Each user stream is coded independently and multiplied
by a beamforming weight vector for transmission through
multiple BS antennas. ZFBF has been shown to achieve a

large fraction of Dirty Paper Coding (DPC) capacity when
the base station has multiple antennas and each user has a
single antenna. We investigate the optimization of ZFBF in
multiple antenna broadcast channel that maximizes user
achievable rate with restriction on the per-antenna ele-
ment power constraints for a rural scenario. In a practical
system, optimal weight vectors would have to be gener-
ated quickly and hence a low complexity rapidly conver-
ging algorithm is required.

In [9–11], the primal–dual interior point method was
developed for the zero-forcing beamforming problemwith
per-element power constraints. The backtracking line
search algorithm is used to calculate the step size for each
iteration of Newton's search method [12]. As the back-
tracking algorithm requires multiple calculation of the
objective function [11], we develop an algorithm to esti-
mate an exact optimal step size in each iteration. This
significantly enhances the efficiency associated with the
line search. In addition, we exploit further the special
structure of the zero-forcing beamforming problem to
reduce the complexity of calculating the updates in each
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iteration of Newton's method. As such, the key contribu-
tion of the paper is a new fast computational procedure
employing an exact optimal step size calculation for each
iteration for the barrier interior point method using New-
ton's method. Design examples show that the proposed
algorithm converges fast to the optimal solution with low
computational complexity.

The outline of the paper is given as follows. Section 2
introduces the system model while Section 3 formulates
the optimization problem. Section 4 discusses the simula-
tion results while Section 5 concludes the paper.

2. System model

Consider a system equipped with M transmit antennas
and N receiver antennas. For 1rnrN, the received signal
yn for the nth user antenna is

yn ¼ hH
n sþvn

where hn is the nth user antenna complex channel vector,
hn ¼ ½hn1;…;hnM�T ; s denotes the antenna outputs,
s¼ ½s1;…; sM �T ; and vn is the complex Gaussian noise with
mean 0 and variance σ2. Assume that the transmitter employs
linear beamforming where the weight vector wn ¼
½wn1;…;wnM�T is used to map the nth user data symbol bn
to the antenna outputs. The antenna output s composed of
signals for all N antennas is given by s¼∑N

n ¼ 1bnwn.
In the case of zero-forcing beamforming, user antennas

do not suffer interference from each other's transmissions
because the beamforming vector wk is chosen to be
orthogonal to all other user channels: hH

k wn ¼ 0;
kan; 1rk;nrN. Assume that the data symbols bn are
independent user-to-user and have an i.i.d. Gaussian dis-
tribution with zero mean and unit variance. Then, the
achievable rate for user antenna n is given by

rn ¼ log2 1þjhH
nwn j 2
σ2

 !
: ð1Þ

For any set of weight vectors the transmit power is
required to be at most a specified value Pmax given by
E½jxm j 2�rPmax;1rmrM. Since the data symbols for
different users are independent and identically distribu-
ted, the above constraints can also be written as

∑
N

n ¼ 1
jwnm j 2rPmax; 1rmrM: ð2Þ

3. Optimization problems

It is assumed that the channel vectors can be estimated
perfectly. Typically this is achieved by using training
sequences in the signal that is transmitted which can be
used to identify the channels. The problem determines the
weight vectors fw1;…;wNg that maximize the minimum
user achievable rate subject to zero-forcing condition and
per-element power constraints. This problem is not a
convex optimization problem. However, it can be trans-
formed into a convex problem by observing that the
optimum beamforming vectors are invariant to phase-
shifts, i.e. if wn

n is an optimum beamforming vector, then

the vector ejθwn
n is also an optimum beamforming vector

[8]. Thus, if an optimum solution exists, then it is possible
to rotate this solution to obtain an equivalent solution so
that hH

nwn is a real number for all n. This results in the
following equivalent optimization problem:

max
wn

t

s:t: hH
nwnZt; 1rnrN

IfhH
nwng ¼ 0; 1rnrN

hH
k wn ¼ 0; kan; 1rk; nrN

∑
N

n ¼ 1
jwnm j 2rPmax; 1rmrM:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2r�1Þσ2

p
. Here, If�g denotes the imaginary

part and Rf�g denotes the real part of a complex number.
Now, we consider the linear constraints in (3). Denote

by w the 2NM � 1 vector of real coefficients, w¼
½RfwT

1gIfwT
1g…RfwT

NgIfwT
Ng�T . The linear constraint in (3)

can be expressed as Aw¼ 0 where A is ð2N2�NÞ � 2NM
matrix. Similarly, the inequality linear constraints in (3)
can be rewritten as bT

nwþtr0;1rnrN; where bn ¼
½0 ⋯ �RfhT

ng�IfhT
ng ⋯ 0�T . Also, the quadratic constraints

in (3) can be written in the matrix form as wTCmwr
Pmax; 1rmrM, where Cm is a diagonal matrix. The
optimization problem (3) can be rewritten as

min
w

�t

s:t: Aw¼ 0
bT
nwþtr0; 1rnrN

wTCmwrPmax; 1rmrM:

8>>>><
>>>>:

ð4Þ

The problem (4) is solved by using the barrier interior
point method using Newton's method. To reduce the compu-
tational complexity associated with the algorithm, the linear
constraints are removed to reduce the dimension of the
problem. Denote by D the nullity of the matrix A, Do2MN,
and P the 2NM � D matrix whose columns form an ortho-
normal basis of the null space of the matrix A, PTP¼ I. The
matrix P can be obtained from the matrix A by employing a
singular value decomposition (SVD) or QR factorization [13].
Hence, any vector w in the null space of the matrix A can be
mapped to a vector r in the reduced space with dimension
D� 1 and vice versa via the linear transformation

r¼ PTw and w¼ Pr: ð5Þ
By using the transformation matrix P, the problem (4)

can be reformulated as

min
r

�t

s:t: bT
n1rþtr0; 1rnrN

rTPTCmPrrPmax; 1rmrM

8>><
>>: ð6Þ

where w¼ Pr and bn1 ¼ PTbn. Let x¼ ½r; t� and ~bn ¼
½bT

n11�T . The inequality constraints in (6) can be rewritten
in the form f mðxÞr0, 1rmrNþM, where

f nðxÞ ¼ ~b
T
nx; 1rnrN

fmþNðxÞ ¼ rTPTCmPr�Pmax; 1rmrM: ð7Þ
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