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a b s t r a c t

We study the estimation problem of linear regression in the presence of a new impulsive
noise model, which is a sum of Cauchy and Gaussian random variables in time domain.
The probability density function (PDF) of this mixture noise, referred to as the Voigt
profile, is derived from the convolution of the Cauchy and Gaussian PDFs. To determine
the linear regression parameters, the maximum likelihood estimator (MLE) is developed
first. Since the Voigt profile suffers from a complicated analytical form, an M-estimator
with the pseudo-Voigt function is also derived. In our algorithm development, both
scenarios of known and unknown density parameters are considered. For the latter case,
we estimate the density parameters by utilizing the empirical characteristic function prior
to applying the MLE. Simulation results show that the performance of both proposed
methods can attain the Cramér–Rao lower bound.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Impulsive noise appears in a variety of applications
such as wireless communications, radar, sonar and image
processing [1]. Unlike Gaussian noise, impulsive noise
belongs to a family of heavy-tailed noise distributions.
Popular models in the literature for impulsive noise are
divided into two categories, namely, single distributions
and hybrid distributions mixed in the probability density
function (PDF) domain. Typical single distributions are
Student's t-distribution [2], α-stable distribution [3] and
generalized Gaussian distribution [4], while the mixture
models include Gaussian mixture [5] and Cauchy Gaussian
mixture (CGM) [6]. Nevertheless, these models alone may
not be able to represent all varieties of impulsive noise in
the real world, particularly when the noise measured is
the sum of two time series: one is an intrinsic Gaussian

noise due to the electronic devices in receiver and the
other is interference from the environment which is non-
Gaussian distributed. For example, in frequency-hopping
spread spectrum radio communication networks [7], bin-
ary transmission systems [8] and multiple-input multiple-
output systems [9], we may model the multiple access
interference as α-stable distribution and regard the envir-
onmental noise as Gaussian distribution. Similarly, in
astrophysical image processing [10], the cosmic microwave
background radiation is contaminated with Gaussian noise
from the satellite beam and α-stable distributed radiation
from galaxies and stars. In these potential applications, the
disturbance components correspond to a new mixture
model which is a sum of two different random processes
in the time domain.

To demonstrate the applicability of this model, we
consider the linear regression problem and take the sum
of a symmetric Cauchy distributed variable with dispersion
γ and zero-mean Gaussian distributed variable with var-
iance σ2 as an illustrative example. This mixture model
belongs to the Middletons Class B [11] model which is a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2014.07.028
0165-1684/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Fax: þ852 3442 0562.
E-mail address: qchenyuan00@126.com (Y. Chen).

Signal Processing 106 (2015) 312–318

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2014.07.028
http://dx.doi.org/10.1016/j.sigpro.2014.07.028
http://dx.doi.org/10.1016/j.sigpro.2014.07.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.07.028&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.07.028&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.07.028&domain=pdf
mailto:qchenyuan00@126.com
http://dx.doi.org/10.1016/j.sigpro.2014.07.028


classical impulsive noise model that has been employed
for decades. The PDF of the mixture has an analytical form,
known as the Voigt function [12], which is obtained via the
convolution of the PDFs of these two processes. When the
density parameters, namely, γ and σ2, are known, the PDF
of the mixture is readily determined, and the maximum
likelihood estimator (MLE) which is a special case of M-
estimator can be directly applied to find the parameters of
interest. The class of M-estimators introduced by Huber
[13] generalizes the MLE by replacing the logarithm of the
likelihood function by an arbitrary ρ-function. Note that
the MLE is in the class of M-estimators by letting
ρ¼ � logðf ðyÞÞ with f(y) denoting the likelihood function.
However, when γ and σ2 are unknown, they should be
estimated via some statistical means, e.g., through the
relationship between the empirical characteristic function
(ECF) and characteristic function (CF) prior to employing
the MLE. Although the MLE has the best performance in
the sense of attaining Cramér–Rao lower bound (CRLB),
it suffers from having a highly complex analytical form
because of the Faddeeva function that appears in the PDF
of the mixture noise. Therefore, in order to keep the high
accuracy of the MLE while reducing the computational
complexity, a new M-estimator with ρ being chosen as the
logarithm of pseudo-Voigt function is employed, which is
referred to as the MEPV.

The rest of this paper is organized as follows. The
proposed methods, namely, the MLE and MEPV, are pre-
sented in Section 2. Both cases of known and unknown
density parameters are investigated. Computer simula-
tions are provided in Section 3 to evaluate the accuracy
and complexity of the MLE and MEPV. Finally, conclusions
are drawn in Section 4.

2. Proposed algorithms

Without loss of generality, the observed data vector
y¼ ½y1 y2 ⋯ yN�T is modeled as

yn ¼ snðθÞþen; n¼ 1;2;…;N; ð1Þ

where snðθÞ denotes the noise-free signal with θ being the
parameter vector of interest, en ¼ pnþqn is the mixture
noise which is a sum of two independent and identically
distributed (i.i.d.) processes pn and qn, whose PDFs are fP
and fQ, respectively.

The PDF of en can be obtained from the convolution of fP
and fQ:

f E ¼ f Pnf Q ; ð2Þ

where n stands for the convolution operator.
Considering the simplest case of the linear regression

model, i.e., snðθÞ ¼ snð½A B�T Þ ¼ AnþB, where A and B are
the unknown parameters, the data model can be rewritten
in vector form as

y¼Hθþe; ð3Þ

where

H¼

1 1
2 1
⋮ ⋮
N 1

2
6664

3
7775; θ¼ A

B

� �
; e¼ ½e1 e2 ⋯ eN�T ð4Þ

and en ¼ cnþgn denotes the additive Cauchy Gaussian
(ACG) noise which is the sum of an i.i.d. Cauchy noise cn
with dispersion γ and the i.i.d. zero-mean Gaussian noise
gn with variance σ2. It is noteworthy that (3) and (4) are
also a common signal model for kick detection in oil
drilling [14]. Although we only study this simple model,
our analysis can be extended to the general linear data
model [15], that is, HARN�M with NZM is known and
θARM is unknown. The PDFs of Cauchy and Gaussian
distributions are

f C cn; γ
� �¼ γ

πðc2nþγ2Þ; ð5Þ

f G gn;σ
2� �¼ 1ffiffiffiffiffiffi

2π
p

σ
exp � g2n

2σ2

� �
: ð6Þ

According to (2), the PDF of en is calculated as

f E en; γ;σ2� �¼ Z 1

�1

γ
πððen�τÞ2þγ2Þ

1ffiffiffiffiffiffi
2π

p
σ
exp � τ2

2σ2

� �
dτ:

ð7Þ
The expression of (7) can be represented as the so-called
Voigt function [12]:

f E en; γ;σ2� �¼ Refwg
σ
ffiffiffiffiffiffi
2π

p ; ð8Þ

where

w¼ exp � enþ iγ
σ
ffiffiffi
2

p
� �2

 !
1þ 2iffiffiffiffi

π
p

Z ðen þ iγÞ=σ
ffiffi
2

p

0
exp t2

� �
dt

 !

ð9Þ
is called the Faddeeva function and Ref�g denotes the
real part.

To estimate the parameter vector θ, we utilize the M-
estimator [13], the cost function of which is

JðθÞ ¼ ∑
N

n ¼ 1
ρn; ð10Þ

where ρn is an arbitrary function [13] which can be chosen,
e.g., as � logðf nÞ. Note that the M-estimator coincides with
the MLE when fn is the ACG's PDF f Eðyn;θ; γ;σ2Þ. In the
following, we work on two types of functions, namely, the
Voigt function and its approximation which is referred to
as the pseudo-Voigt function.

2.1. Maximum likelihood estimator

We first use the MLE to find the unknown parameters,
assuming the scenario of known γ and σ2. The study is then
extended to the case of unknown distribution parameters.

In the first scenario, the PDF of the mixture noise is
known and the PDF of y is

f E y;θ; γ;σ2� �¼ ∏
N

n ¼ 1

Refwng
σ
ffiffiffiffiffiffi
2π

p ; ð11Þ
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