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a b s t r a c t

This paper addresses the problem of equal distribution of satellite constellations on circular target orbits.
The control goal is tomake the constellation converge to a circular target orbit, while spatially distributing
the satellites at equal inter-satellite distances. The solution is defined in the port-Hamiltonian framework,
which gives a clear physical interpretation of the obtained control laws, insight into the energy consump-
tion and complete stability proofs. The controller consists of two parts: the internal control system steers
each individual satellite to the target orbit, the external control system equally distributes the satellite
constellation. Numerical simulation results are given to illustrate the effectiveness of the approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Formation flying of satellite constellations has received quite
some attention in recent years. There have been different defini-
tions of the terms satellite constellation and formation flying, for
example based on the fact whether the states of the satellites are
coupled (formation flying Scharf, Ploen, & Hadaegh, 2003) or not
(constellation Scharf, Hadaegh, & Ploen, 2004). In this work a satel-
lite constellation refers to a group of satellites which collaborate in
order to achieve a higher level goal. By formation flying we refer
to this higher level goal itself, which in this work corresponds to
achieving certain desired relative distances between the satellites
in the constellation.

Using satellite constellations opens up possibilities for new
types of missions, which are not possible with the traditional
one satellite setup (Das & Cobb, 1998). For example, the OLFAR
mission aims at exploring the below 30 MHz frequency band-
width radio signals. To achieve sufficient spatial resolution, such
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a low frequency telescope in space needs an aperture diameter
of 10–100 km.2 Clearly, these type of applications are not feasible
with a single satellite.

The dynamic environment where constellation operates can be
divided into two regimes (Scharf et al., 2003), namely deep space
and planetary orbits. In deep space the relative dynamics of a con-
stellation are usually approximated, often by a double integrator.
For planetary orbits on the other hand the constellation dynamics
are considered explicitly, including gravitational forces and distur-
bances such as drag. In this work we focus on one particular type
of planetary orbit, namely circular orbits.

Much formation flying research has focused on the case where
only onepoint in the formation (e.g. the center ofmass or the leader
satellite) is on the planetary orbit (Chung, Ahsun, & Slotine, 2009;
Kristiansen & Nicklasson, 2009), while the individual satellites do
not need to be on the orbit. In contrast, McInnes (1995), Ulyby-
shev (1998) and this work address the problem where each satel-
lite is on the orbit, while the satellites equally distribute spatially
on the orbit. This problem is also known as orbital phasing, since
the control goal is to keep spacecrafts phased on the orbit (Scharf
et al., 2004). Equal spatial distribution on circular orbits is of spe-
cial interest to Global Navigation Satellite Systems (GNSS) like the
Global Positioning System (GPS) andmore recently Galileo. GPS re-
quires 24 satellites to equally distribute on six circular orbits, while
Galileo requires 30 satellites to distribute on three orbits. Other

2 http://ens.ewi.tudelft.nl/Research/array/olfar/intro.php.

http://dx.doi.org/10.1016/j.automatica.2014.08.027
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.08.027
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.08.027&domain=pdf
mailto:e.vos@rug.nl
mailto:j.m.a.scherpen@rug.nl
mailto:a.j.van.der.schaft@rug.nl
http://ens.ewi.tudelft.nl/Research/array/olfar/intro.php
http://dx.doi.org/10.1016/j.automatica.2014.08.027


2642 E. Vos et al. / Automatica 50 (2014) 2641–2647

applications may be found in meteorological, environmental and
military applications.

In this work we propose a controller based on energy consider-
ations to solve the spatial distribution problem. Recently we have
witnessed an increasing interest in these so-called energy-based
models (Ortega, van der Schaft, Mareels, & Maschke, 2002), which
allow for analysis and control design for nonlinear, multi-domain
systems such as satellite constellations. The energy function of
a system determines not only the static, but also the transient
behavior (Ortega et al., 2002) thereby enabling stabilization and
performance studies. Furthermore, practitioners are familiar with
energy concepts and therefore energy-based models may serve as
a lingua franca amongst (control) engineers (Ortega et al., 2002).
Two commonenergy-basedmodels are providedby the Lagrangian
(Chung et al., 2009) and port-Hamiltonian framework (Fujimoto,
Sakurama, & Sugie, 2003; Shaik, Zonetti, Ortega, Scherpen, & van
der Schaft, 2012).

In particular, the use of port-Hamiltonian (pH) systems has
proven highly successful in many applications, see Duindam,
Macchelli, and Stramigioli (2009), Ortega et al. (2002), Shaik et al.
(2012) and references therein. In the port-Hamiltonian framework
theplant and controller are viewedas energyprocessing dynamical
systems and the models developed in this framework capture the
energy, interconnection and dissipation structure of the system
explicitly.

This work provides a theoretical framework for the spatial dis-
tribution of satellites on circular orbits. Preliminary versions of this
work have appeared at (Vos, Scherpen, & van der Schaft, 2013; Vos,
Shaik, Scherpen, & van der Schaft, 2013). The control system con-
sists of virtual springs and dampers and builds upon (van der Schaft
& Maschke, 2013) modeling the interaction between satellites in
the constellation by a graph. Stability is proven using the energy
function of the closed-loop system as a Lyapunov function candi-
date.

For satellite constellations the limited availability of propel-
lant asks for energy-efficient control schemes. Insight into the con-
troller’s power requirements and energy consumption is inherent
to the port-Hamiltonian frameworkmaking use of the energy func-
tions.

We first recall some essential elements from port-Hamiltonian
theory and graph theory,which are used throughout the remainder
of this paper. Section 2 presents the dynamical model for the
satellites and derive the error dynamics w.r.t. the circular target
orbit. Section 3 then follows with the description of the control
system. The main result is presented and analyzed in Section 4,
followed by simulation results to illustrate the effectiveness of our
approach in Section 5. Finally in Section 6 concluding remarks are
presented including some directions for future work.

1.1. Preliminaries

The port-Hamiltonian (pH) framework is an energy-based
framework which describes a large class of (nonlinear) systems
including passive mechanical and electrical systems (Duindam
et al., 2009). Define the state x ∈ Rn, input u ∈ Rm, and output y ∈

Rm. The product of the input and output uT (t)y(t) equals the power
supplied to the system. The general form of a pH system is given by

ẋ = [J(x) − R(x)]
∂H
∂x

(x) + g(x)u

y = gT (x)
∂H
∂x

(x)
(1)

where the structure matrix J(x) ∈ Rn×n is skew-symmetric (i.e.,
J(x) = −J(x)T ), and the dissipation matrix R(x) ∈ Rn×n is posi-
tive semi-definite (i.e., R(x) = R(x)T ≥ 0). The Hamiltonian H(x) :

Rn
→ R equals the total energy stored in the system, and its time

derivative is given by Ḣ ≤ uT (t)y(t). Hence the increase in the
stored energy is always equal to or smaller than the power sup-
plied through the power-port (u, y). Therefore (1) is a passive sys-
tem if H(x) is bounded from below. See Duindam et al. (2009) for
a concise overview of the port-Hamiltonian framework.

The pairwise interaction between satellites in the constellation
is modeled by an undirected connected graph G(V, E), where V
denotes the set of n nodes and E ⊂ V × V denotes the set of m
edges. Satellites i and j can interact if there is an edge (i, j) ∈ E .
Each edge has an orientation by assigning a positive sign to one end
and a negative sign to the other end. The incidence matrix B asso-
ciated to G(V, E) describes which nodes are coupled by an edge,
and is defined as

bik =


+1 if node i is the head node of the edge k
−1 if node i is the tail node of the edge k
0 otherwise.

For more details on graphs see e.g. Bollobás (1998).

2. Port-Hamiltonian formulation of translational dynamics of
the satellite constellation

Consider an inertial frame of reference in Cartesian coordinates,
with the origin at the center of earth. The z-axis of the reference
frame is assumed to be normal to the orbital plane of interest. We
are merely interested in the satellite dynamics in the orbital plane,
so we omit the dynamics along the z-axis. Each satellite is mod-
eled as a point mass which is subject to the gravitational field of
planet earth. Let qci =


qcx,i, q

c
y,i

T and pci =

pcx,i, p

c
y,i

T denote the
position and the momentum in Cartesian coordinates of satellite i
in the inertial frame of reference (see Fig. 1). The port-Hamiltonian
dynamics of satellite i are given by

ẋci = Jci
∂Hc

i

∂xci
(xci ) + gc

i f
c
i

vc
i = gc

i
T ∂Hc

i

∂xci
(xci ),

(2)

with state xci =

qci , p

c
i

T , input force f ci =

f cx,i, f

c
y,i

T , and out-

put velocity vc
i =


vc
x,i, v

c
y,i

T . The structure matrix Jci and the in-

put matrix gc
i are given by respectively Jci =


0 I2

−I2 0


and gc

i =
0
I2


. The Hamiltonian Hc

i (x
c
i ) is the sum of the kinetic energy (KE)

of satellite i and the gravitational potential energy (GPE), where
earth is assumed to be a perfect sphere (i.e., deviations like the
J2-perturbation are neglected) (Alfriend, Srinivas, Gurfil, How, &
Breger, 2010) and is given by

Hc
i (x

c
i ) =

1
2mi

(pcx,i)
2
+

1
2mi

(pcy,i)
2  

KE

−
µemiqci   
GPE

, (3)

withmi themass of satellite i and
qci  the distancew.r.t. the center

of earth defined as
qci  =


(qcx,i)2 + (qcy,i)2.

In contrast with most energy functions, Hamiltonian (3) is not
bounded from below and therefore Hc

i (x
c
i ) cannot be directly used

as a Lyapunov function candidate. However, from physics we have
that

qci  > 0 (see Assumption 1), and thus Hc
i (x

c
i ) is in fact

bounded from below.Moreover,Hc
i (x

c
i ) hasmultiple critical points

whichmight give rise to undesired equilibria. The critical points for
Hc

i (x
c
i ) are defined as those xci for which ∂Hc

i
∂xci

(xci ) = 0.
In order to facilitate the control design of equal distribution on

a circular orbit we employ polar coordinates. Let ri ∈ R, φi ∈

[0, 2π ], pi ∈ R, and hi ∈ R denote the radial distance, azimuthal
angle, momentum, and angular momentum of satellite i in polar
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