
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

An optimization approach for agent-based computational models of
biological development

Pablo Gonzalez-de-Aledo⁎,a, Andrey Vladimirovd, Marco Mancab, Jerry Baughc, Ryo Asaid,
Marcus Kaisere,f, Roman Bauerf,e

a Software Performance Optimization Group, Imperial College London, London, United Kingdom
b CERN Openlab, IT Department, CERN, Geneva 1211, Switzerland
c Intel Corporation, Santa Clara, CA 95052, United States
d Colfax International, 750 Palomar Ave, Sunnyvale, CA 94085, United States
e Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
f Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom

A R T I C L E I N F O

Keywords:
Optimizations
Parallel computing
Vectorization
Coprocessor
Performance
Agent-based models
Biological
Simulation

A B S T R A C T

Current research in the field of computational biology often involves simulations on high-performance computer
clusters. It is crucial that the code of such simulations is efficient and correctly reflects the model specifications.

In this paper, we present an optimization strategy for agent-based simulations of biological dynamics using
Intel Xeon Phi coprocessors, demonstrated by a prize-winning entry of the “Intel Modern Code Developer
Challenge” competition. These optimizations allow simulating various biological mechanisms, in particular the
simulation of millions of cells, their proliferation, movements and interactions in 3D space. Overall, our results
demonstrate a powerful approach to implement and conduct very detailed and large-scale computational si-
mulations for biological research. We also highlight the main difficulties faced when developing such optimi-
zations, in particular the assessment of the simulation accuracy, the dependencies between different optimiza-
tion techniques and counter-intuitive effects in the speed of the optimized solution. The overall speedup of
595× shows a good parallel scalability.

1. Introduction

With the recent improvements in computing performance, it has
become possible to conduct very detailed and large-scale computational
simulations for biological research (e.g. [1–7]). However, the efficient
use of computing resources remains a major topic in computational
biology.

Agent-based models are a powerful computational approach for
research on many topics [8]. These models often involve large numbers
of interacting agents, and so are usually very demanding from a com-
putational resource point of view. Along these lines, a number of stu-
dies have used high-performance computing for agent-based computer
simulations. For example, Deissenberg et al. model the European
economy by incorporating millions of agents [9]. In biological simu-
lations, agent-based models usually are multi-scale, including interac-
tions between intracellular, extracellular and cell behavioral dynamics
in space. The question of how to implement models for the efficient
simulation of such computation-intense biological problems is an

important research topic in computational biology (e.g. [10–12]), and
the application of modern code development approaches has big po-
tentials to advance this field in various biological scenarios. Along those
lines, we here focus on an examplary scenario to maximize the efficacy
of multi-core simulations relevant to developmental biology.

In particular, we address general optimization techniques for spa-
tial, agent-based simulations in developmental biology. These simula-
tions comprise millions of cells, the interaction among these, as well as
their movements in 3D space, and a computational load that changes
during simulation. Our study involves the application of parallel co-
processors in high-performance supercomputing. The optimization of
code for such hardware is in its infancy, and recent studies demonstrate
impressive improvements for scientific simulations [13,14]. However,
it remains underinvestigated how biological agent-based simulations
that incorporate multiple interacting scales can benefit from such
hardware.

Although various programming interfaces and operating systems
ease the transition from sequential to multi-threaded parallel code,

https://doi.org/10.1016/j.advengsoft.2018.03.010
Received 16 July 2017; Received in revised form 2 March 2018; Accepted 20 March 2018

⁎ Corresponding author.
E-mail addresses: pgonzal5@ic.uc.uk, pabloga@teisa.unican.es (P. Gonzalez-de-Aledo), andrey@colfax-intl.com (A. Vladimirov), marco.manca@cern.ch (M. Manca),

jerry.r.baugh@intel.com (J. Baugh), ryo@colfax-intl.com (R. Asai), marcus.kaiser@ncl.ac.uk (M. Kaiser), roman.bauer@ncl.ac.uk (R. Bauer).

Advances in Engineering Software xxx (xxxx) xxx–xxx

0965-9978/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

Please cite this article as: González de Aledo, P., Advances in Engineering Software (2018), https://doi.org/10.1016/j.advengsoft.2018.03.010

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2018.03.010
https://doi.org/10.1016/j.advengsoft.2018.03.010
mailto:pgonzal5@ic.uc.uk
mailto:pabloga@teisa.unican.es
mailto:andrey@colfax-intl.com
mailto:marco.manca@cern.ch
mailto:jerry.r.baugh@intel.com
mailto:ryo@colfax-intl.com
mailto:marcus.kaiser@ncl.ac.uk
mailto:roman.bauer@ncl.ac.uk
https://doi.org/10.1016/j.advengsoft.2018.03.010


fully-automated parallelization is very difficult to archive due to the
lack of adaptation of compilers and profilers for the underlying hard-
ware structure and the data that feeds the program at hand. Therefore,
there is still a huge variation in performance due to different pro-
gramming styles across functionally equivalent versions of the same
code.

In order to explore and assess the performance of current optimi-
zation techniques for parallelized scientific software, Intel(R) organized
in 2015 the Intel Modern Code Developer Challenge. The primary goal
of this challenge is to expose students and researchers to the field of
parallel computation with the Xeon Phi platform and the Intel compiler,
by teaching modern parallelization techniques that not only increase
the performance of a given code on a well-known and established
platform, but also keep the code portable for future generations of the
same platform. Not less important, the challenge is based on a common
language and encourages the discussion of new programming techni-
ques for parallel computation. Moreover, it serves as a showcase for an
automated and semi-automated parallelization strategy, using the Intel
Parallel compiler.

The Intel Modern Code Developer Challenge took place in October
2015 and comprised the optimization of code for simulating the for-
mation of biological tissue in the early stages of brain development.
This code allows the simulation of millions of neural progenitor cells
that interact with each other biochemically in 3D space. In particular, it
involves a number of fundamental processes during the formation of the
brain; namely cell proliferation, migration, and secretion as well as
detection of diffusable substances and their concentration gradients.
Understanding how these key mechanisms of brain tissue development
play out, by taking into account genetic factors in a spatially and
temporally dependent way, is crucial for the identification of the causes
and potential treatments for neurodevelopmental diseases, such as
epilepsy, autism and schizophrenia [15–17]. This code has been de-
veloped in the context of a collaboration between CERN openlab and
Newcastle university, called the BioDynaMo project [18]. The challenge
was accepted by over 17.000 students representing more than 130
universities across 19 countries. The criterion for evaluating the entries
was based on the optimized execution time as well as the correctness of
the final implementation. The former was measured in the same cluster
that the students used to test their optimizations, which is described in
Section 3. The latter was ensured by the inclusion of two functions in
the code that check the final energy of the cellular clusters as well as by
manual inspection by three expert judges from Intel.

As part of the facilities offered to the students, Colfax provided re-
mote access to Intel Xeon processor and Xeon Phi coprocessor-based
clusters (whose architectural details are described in Section 3). Stu-
dents were provided free copies of the Intel Parallel Studio XE Cluster
Edition and over 20 h of instructional material (that was used by over
1.000 participants).

In this work, we present the results obtained from one of the prize-
winning submissions of the challenge (2nd place), aiming at the opti-
mization of the aforementioned neuroscientific code. Importantly, this
particular simulation example at hand comprises processes relevant for
many problems in computational biology, because they involve in-
tracellular processes as well as intercellular communication via physical
mechanisms. Moreover, the code yields remarkable performance also
on architectures other than used in the Intel Modern Code Developer
Challenge.

From a computational perspective, one distinguishing feature of
developmental models is the dynamic nature of the computational load:
the developing brain comprises only a small number of cells at the
beginning, but subsequently the system size increases exponentially.
Hence, the allocated computing resources meet temporally changing
requirements during simulation.

Overall, the performance and correctness of optimized code are
paramount factors for the explanatory power and scientific practicality
of computer simulations of biological dynamics. The optimized code

described in this manuscript, as well as the code of the first and third
winning entries are provided as supplementary material.1 Due to the
fact that there are many possible interleaved ways of optimizing this
non-trivial code, a detailed comparison between the three versions is
out of the scope of this work. The third winner of the competition also
provides an explanation of the optimization techniques that he em-
ployed in [19], and a substantial overlap exists between the techniques
described in his solution and the ones described in this manuscript.

The main contributions of this paper can be summarized as:

• We present a highly parallel implementation of a computer simu-
lation that involves millions of agents interacting in a 3D environ-
ment.

• We study the simulation of biological development using various
multi-core platforms.

• We explain a general approach to transform sequential code of
biological dynamics to run on modern, highly parallel architectures
such as the Intel Knights Landing, Broadwell, Sandy-Bridge and
AMD Opteron.

• We present the techniques that enabled us to obtain almost 600×
speed-up over the mentioned platforms and simulations.

• The manuscript exemplifies the innovative use of computational
strategies and numerical algorithms for large-scale biological pro-
blems.

2. Initial software architecture

The initial architecture of the code can be seen in Fig. 1. The code
can be partitioned into two phases. Initially, a single precursor cell is
placed in the middle of a 3D space.

2.1. Proliferation phase

In the first phase of the simulation, cells move randomly and divide
until the final number of cells is reached. After each cell division, the
daughter cells each adopt one of two possible cell types, hence giving
rise to cell differentiation. This simulation is performed using the
functions produceSubstances and cellMovementAndDuplication. In the
function produceSubtances, one of the two substances (a or b) is pro-
duced depending on the cell type (+ 1 or − 1). Hence, each cell secretes
only one of two possible substances, which is determined by their cell
type. Cells of type + 1 secrete substance a, and cells of type − 1 secrete
substance b. The dynamics of these two substance concentrations are
described by the following partial differential equations:

∂

∂
= − +

∂

∂

a
t

p μa D a
xa

2

2 (1)

∂

∂
= − +

∂

∂

b
t

p μb D b
x

,b
2

2 (2)

with the basal production constant =p 0.1. The prespecified diffusion
constant D and decay constant μ are identical for both substances.

In the functions runDiffusionStep and runDecayStep, the diffusion and
decay of the two cellularly secreted substances are numerically simu-
lated. These functions read and write into the Conc 3-dimensional
matrix, which stores the concentrations of both substances within a
spatial grid.

At the end of the iterative step in the proliferation phase, the
function cellMovementAndDuplication updates the arrays posAll,
pathTraveled, typesAll. The array pathTraveled includes the overall
length of the path that each cell travels. If this value exceeds a given
threshold parameter Tpath, the cell divides and the value is reset.

1 Also available at https://www.github.com/pablo-aledo/intel-modern-code-
challenge.

P. Gonzalez-de-Aledo et al. Advances in Engineering Software xxx (xxxx) xxx–xxx

2

https://www.github.com/pablo-aledo/intel-modern-code-challenge
https://www.github.com/pablo-aledo/intel-modern-code-challenge


Download English Version:

https://daneshyari.com/en/article/6961307

Download Persian Version:

https://daneshyari.com/article/6961307

Daneshyari.com

https://daneshyari.com/en/article/6961307
https://daneshyari.com/article/6961307
https://daneshyari.com

