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a b s t r a c t

This paper is concerned with the stabilization problem for a class of Markovian stochastic jump systems
against sensor fault, actuator fault and input disturbances simultaneously. In the proposed approach, the
original plant is first augmented into a new descriptor system, where the state vector, disturbance vector
and fault vector are assembled into the state vector of the new system. Then, a novel augmented sliding
mode observer is presented for the augmented system and is utilized to eliminate the effects of sensor
faults and disturbances. An observer-basedmode-dependent control scheme is developed to stabilize the
resulting overall closed-loop jump system. A practical example is given to illustrate the effectiveness of
the proposed design methodology.

© 2014 Published by Elsevier Ltd.

1. Introduction

In modern industrial systems, various types of malfunction or
imperfect behavior, resulted from the unexpected variations in
normal wear in components, external surroundings, or sudden
changes in signals, always occur inevitably in normal operations.
These phenomenon are often referred as sensor/actuator faults.
Since the fault can deteriorate system performances and even
cause catastrophic accidents, it is of great importance to detect
faults in time for the safety and reliability of control systems. In
order to improve efficiency, the design strategies can be classified
into fault detection and isolation (FDI) and fault-tolerant control
(FTC). Over the past two decades, FDI and FTC have been exten-
sively investigated, and a large number of results have been re-
ported on FDI and FTC for various types of systems, see, for instance
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Basin and Rodriguez-Ramirez (2011), Jiang, Staroswiecki, and Coc-
quempot (2006), Niu and Ho (2010), Niu, Wang, andWang (2010),
Qi, Zhu, and Jiang (2013), Yin, Ding, Haghani, Hao, and Zhang
(2012), Yin, Luo, and Ding (2013) and the references therein. To
mention a few, the authors in Yin et al. (2013) were the first to pro-
pose a model-data integrated fault tolerant control scheme with
performance optimization for real time industrial applications.

Markovian jump systems (MJSs) including both time-evolving
and event-driven mechanisms have been applied to model the
abrupt phenomena such as random failures, repairs of the com-
ponents and sudden environment changes. A great number of
efforts have been made to investigate the issues of stability, sta-
bilization, and filtering of MJSs (Liu, Gu, & Hu, 2011; Shi, Boukas,
& Agarwal, 1999a,b; Shi, Xia, Liu, & Rees, 2006; Shu, Lam, &
Xiong, 2010; Wu & Ho, 2010; Wu, Yao, & Zheng, 2012; Zhang &
Boukas, 2009). Another research frontier, stochastic differential
equation (Basin, Elvira-Ceja, & Sanchez, 2011; Basin, Loukianov,
& Hernandez-Gonzalez, 2010) has been also recognized as one of
the most effective stochastic models in applications, e.g., aircraft,
chemical or process control system, and distributed networks.
Therefore, extensive attention has also been devoted to stochas-
tic systems governed by Itô stochastic differential equations due
to their numerous applications in mechanical systems, economics
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and systems with human operators. Furthermore, a variety of re-
sults have been reported with respect to the problems of stability,
stabilization and filtering for Itô stochastic systems with or with-
out Markovian jump (Niu, Ho, & Li, 2010; Niu et al., 2010; Shen,
Wang, Shu, & Wei, 2008; Tong, Li, Li, & Liu, 2011; Wang, Ho, Dong,
& Gao, 2010; Wang, Liu, & Liu, 2010).

It should be pointed out that, in practical engineering, Brownian
motion, output disturbances, sensor and actuator faults often
occur in control systems simultaneously. It is no doubt that the
existences of these unexpected phenomena will deteriorate the
performances or lead to instability of the systems. Therefore, the
control systems are required to own the abilities to eliminate those
effects and guarantee the stability of the corresponding closed-
loop system. Although some attempts on FTC for Itô stochastic
systems involved with Brownian motion have been made, the
achieved results in the existing literature have been either focused
only on sensor faults (Wang, Chien, & Lee, 2011; Wang, Chien,
Leu, & Lee, 2010), or only on actuator faults (Jiang, Zhang, & Shi,
2011; Zhang, Jiang, & Shi, 2012; Zhang, Jiang, & Staroswiecki,
2010). However, in realistic industrial process, sensor fault and
actuator faults always exhibit simultaneously, andmore novel and
effective control methodologies are desirable to be developed to
solve the corresponding stabilization problems. This observation
motivate us to address the fault diagnosis/estimation problem
for Itô stochastic systems with Markovian switching under the
considerations of combined faults and disturbances.

In this paper, the FTC problem is studied for a class of stochas-
tic systems with Markovian jump parameters. The issues involved
here are sensor and actuator faults, and output disturbances. A
novel sliding mode observer approach is developed to solve the
FTC problem for stochastic systems with Markovian jump param-
eters. By an augmented approach, the sensor faults and output
disturbances are converted into ‘‘input disturbances’ in the new
augmented system. A sliding mode observer method is proposed
to eliminate the effects of sensor and actuator faults, output dis-
turbances simultaneously. Based on the estimation, a FTC strategy
is synthesized to stabilize the resulting control system. Finally, a
practical example is given to demonstrate the effectiveness of the
proposed results. The remainder of the paper is organized as fol-
lows: the problem to be addressed is formulated in Section 2, and
the main results are presented in Section 3. A design example is
provided in Section 4 to demonstrate the effectiveness of the de-
veloped approach. Finally, Section 5 concludes the paper.

Notations: Throughout the paper, ∥ · ∥ and | · | denote the
Euclidean norm and 1-norm of a vector, respectively. Given a
symmetric matrix A, the notation A > 0(< 0) denotes A is a posi-
tive definitematrix (negative definite, respectively). Given a square
matrix Ã, ÃĎ denotes the generalized inverse of Ã. In denotes an
identity matrix with dimension n. R+ denotes the set of all posi-
tive real numbers. C+ denotes the set of all complex numbers with
positive real part.

2. Problem formulation

Let {rt , t ≥ 0} be a homogeneous finite-state Markovian pro-
cesswith right continuous trajectories,which takes value in a finite
state space S = {1, 2, . . . , s} with generator Π = [πij], i, j ∈ S
given by

Pr

rt+△t = j | rt = i


=


πij△t + o (△t) , i ≠ j
1 + πii△t + o (△t) , i = j

where △t > 0, and lim△t→0


o(△t)
△t


= 0. πij > 0 for i ≠ j denotes

the transition rate frommode i to mode jwith πii = −


j≠i πij for

i ∈ S. Consider the following Itô stochastic systems with Marko-
vian jump parameters:

dx(t) = [A (rt) x(t) + B (rt) u (t) + Ba (rt) fa (t)] dt
+ Bw (rt) x (t) dω (t) ,

y(t) = C (rt) x (t) + D (rt) u (t) + Da (rt) fa (t)
+Dd (rt) d (t) + Cs (rt) fs (t) ,

(1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm denotes the con-
trol input, and y(t) ∈ Rp is themeasurement output. In system (1),
A(rt) ∈ Rn×n, B(rt) ∈ Rn×m, Ba(rt) ∈ Rn×a, Bw (rt) ∈ Rn×n, C (rt) ∈

Rp×n, D (rt) ∈ Rp×m, Da (rt) ∈ Rp×a, Dd (rt) ∈ Rp×d and Cs (rt) ∈

Rp×q are system, fa(t) ∈ Ra and fs(t) ∈ Rq are the unknown actu-
ator and sensor faults respectively, and d (t) ∈ Rd is the bounded
disturbance. For notational simplicity, when rt = i, i ∈ S, the ma-
trices A (rt), B (rt), Ba (rt), Bw (rt), C (rt), D (rt), Da (rt) ,Dd (rt) and
Cs (rt) will be represented by Ai, Bi, Bai, Bwi, Ci, Di, Dai, Ddi and Csi
respectively. ω (t) denotes a standard one-dimensional Brownian
motion on a probability space (Ω, F , P ) relative to an increasing
family (Ft)t>0 of σ -algebra Ft ∈ F , in which Ω is the sample
space, F is the σ -algebra of subsets of the sample space, and P
is the probability measure on F . ω(t) satisfies E {ω (t)} = 0, and
E

ω2 (t)


= t .

The following assumptions are used throughout the paper.

(A1) The actuator vector fa(t), the sensor fault vector fs (t) and the
disturbance d(t) satisfy:

∥fs(t)∥ 6 γ1, ∥ḟs(t)∥ 6 γ2, ∥fa(t)∥ 6 α1,

∥ḟa(t)∥ 6 α2, ∥d(t)∥ 6 d1, (2)

where γ1 > 0, γ2 > 0, α1 > 0, α2 > 0 and d1 > 0 are known
constants.

(A2) For each i ∈ S, (Ai, Ci) is an observable pair. In addition, there
exists a scalar θi > 0 such that the following rank condition
holds

rank


θiIn + Ai Bai
Ci Dai


= n + a.

(A3) For each i ∈ S, Dai, Ddi and Csi are full column rank matrices.

Remark 1. The aforementioned three assumptions are reasonable
and nonconservative. In practice, the real functions of sensor fault
and actuator fault are often unknown. In order to present the FTC
procedure, we provide assumption (A1), in which the condition
is general in the existing FTC results. In addition, the condition
in assumption (A2) is used for designing the observer and the
condition in assumption (A3) is utilized for developing the sliding
mode controller.

In the following discussion, we will present a new control
approach for system (1) to obtain the estimations of x(t), fs(t) and
fa(t) simultaneously. In addition, an observer-based FTC scheme is
developed to stabilize the closed-loop system.

The following preliminaries are introduced, which will be used
for deriving our main results in the sequel.

Definition 1 (Mao, 1999). The stochastic system (1) with u (t) ≡ 0
is said to be stochastically stable if for every initial condition x0
∈ Rn and initial mode r0, E


∞

0 ∥x (t)∥2 d(t) | x0


< ∞ holds.

Lemma 1 (Chen, 1999). Given a pair of matrix (Ã, C̃) with Ã ∈ Rn×n,
C̃ ∈ Rp×n, the following two conditions are equivalent: (i) The matrix
Ã is stable; (ii) If the pair (Ã, C̃) is observable, then the Lyapunov
equation ÃT P̃ + P̃ Ã = −C̃T C̃ has a unique solution.
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