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a b s t r a c t

Power laws are used to describe a large variety of natural and industrial phenomena. Consequently, they
are used in a wide range of scientific research and management applications. This paper focuses on the
identification of bounds on the parameter and prediction uncertainty in a power-law relation from
experimental data, assuming known bounds on the error between model output and observations. The
prediction uncertainty bounds can subsequently be used as constraints, for example in optimisation and
scenario studies. The set-membership approach involves identification and removal of outliers, esti-
mation of the feasible parameter set, evaluation of the feasible model-output set and tuning of the
specified bounds on model-output error. As an example the procedure is applied to data of scattered
sediment yield versus catchment area (Wasson, 1994). The key result is an un-falsified relationship
between sediment yield and catchment area with uncertainty bounds on its parameters. The set-
membership results are compared with the results from a conventional least-squares approach with
first-order variance propagation, assuming a zero-mean, symmetrical error distribution.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades uncertainty analysis has become an essential
part of environmentalmodel building (see e.g. Beck,1987; Beven and
Binley, 1992; Refsgaard et al., 2007). Given a well-defined method of
characterizing uncertainty, the practical aims are to quantify the
propagation of error in the data on which a model is based (obser-
vation error) to uncertainty in the model-parameter estimates, or
propagation of model-parameter uncertainty to prediction uncer-
tainty. This paper is a contribution to conventional and relatively
unknown methods for quantifying these uncertainties.

In a wide range of scientific and other applications, power laws
are used to describe natural and industrial phenomena quantita-
tively (e.g. Suki, 2002; Visser and Yunes, 2003; Glazier, 2005;
Newman, 2005; Nacher and Akutsu, 2007; Ames et al., 2009; Deng
and Jung, 2009; Lima-Mendez and Van Helden, 2009; Martinez,
2009; Millington et al., 2009). In particular, power-law probability
densities are widely applied in earth sciences, linguistics, biology,
economics and social sciences (e.g. Plerou et al., 2004; Doyne

Farmer and Lillo, 2004; Gupta and Campanha, 2005; Arnold and
Bauer, 2006; Schlicht and Iwasa, 2007) to relate sizes to
frequency of occurrence. These laws embody the phenomenon that
large is rare and small is common. In power-law densities, the
exponent in the power law is always negative (since the density
must integrate to unity). But the application of power laws is not
limited to negative exponents. For instance, an exponent of 0.5
gives a square root relation between the free outflow rate from
a tank and depth, as is derived from Bernoulli’s law. An exponent
greater than 1 gives an increasing inputeoutput relation, as is
frequently seen in biology. In fact, many well-known laws in
physics are expressed in terms of a power law function, for
instance, the StefaneBoltzmann law, the inverse-square laws of
Newtonian gravity and electrostatics, van der Waals’ force model,
Kepler’s third law, the squareecube law (ratio of surface area to
volume) and the twentieth century’s best-known equation
E ¼ mc2; also Pareto’s principle follows a power law. In the pre-
computer era, scientists plotted all kinds of phenomena on loge
log scales to arrive at a linear relationship between variables
related by a power law. To summarise, power laws are a widely
useful way of describing relationships.

Apart from some derived relationships in physics, power laws
are most frequently obtained directly from experimental data
(Clauset et al., 2009). Experimental data always contain
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measurement and sampling errors, usually characterized statisti-
cally. Consequently, the estimates of the power-law parameters are
statistical. However, the presumed statistical properties are not
always valid, for instance in case of very limited data or after non-
linear transformation of the data. As an alternative, a bounded-
error characterization of errors has often been employed in
recent decades, sometimes under the name of the set-membership
approach.

The objective of the paper is to present a set-membership
approach to the identification of error bounds on the parameters
and hence on the output of a power law, and to compare these
results with those obtained from a conventional least-squares
approach with first-order variance propagation, assuming a zero-
mean, symmetrical error distribution. As an example, the
approach is applied to data on river sediment yield and catchment
area (Wasson, 1994).

In Section 2, background material on power laws with the
conventional statistical error approaches and the set-membership
approach is presented. Section 3 gives results of applying the set-
membership approach to data of Wasson and results from a statis-
tical error approach using conventional least-squares with first-
order variance propagation. The paper concludes with a discus-
sion on both approaches and possible extensions of the set-
membership approach to more general cases, and some
concluding remarks.

2. Background

2.1. Statistical error approach

Power laws express the scalar output y as a single-term poly-
nomial in a scalar input x:

y ¼ axk þ o
�
xk
�
hf ðxÞ þ e (1)

where a, k are real constants and o(xk) is asymptotically small and
treated as part of the model-output error. The parameter k is called
the scaling exponent, since a property of a power law is scaling
invariance: if x is multiplied by a constant c then
f ðcxÞ ¼ aðcxÞk ¼ ckf ðxÞff ðxÞ, merely scaling the function. Allo-
metric scaling laws, for instance, frequently used to describe the
relation between biological variables, are some of the best-known
power laws in nature. Notice from (1) that for k ˛ {�1, 0, 0.5, 1, 2}
some typical power law functions, as the hyperbolic, constant,
square root, linear and parabolic function, result. In what follows,
and from the viewpoint of parameter estimation, (1) is called a non-
linear regression, with unknown parameters a and k.

Notice, however, from (1) that when k is given, a can be simply
estimated from the resulting linear regression using ordinary least-
squares (LS) estimation. On the contrary, the estimation of the
exponent k is not so easy. There are many ways of estimating the
scaling exponent in a power law from data. However, not all of them
yield unbiased and consistent estimates. A commonly applied tech-
nique is to apply a (natural) logarithm transformation to the deter-
ministic part y ¼ axk of (1), which results in the linear regression

ln y ¼ ln aþ kln x (2)

It is evident that logarithmic transformation distorts the error e
(see e.g. Bartlett, 1947; Box and Cox, 1964). In this specific case,
using a Taylor series expansion,

ln y ¼ ln
�
axk þ e

�
yln aþ kln xþ e

axk
� e2

2ax2k
(3)

Hence

E½ln y�yE½ln aþ kln x� � s2e
2ax2k

(4)

with s2e the variance of e and assuming that E[e] is zero. Conse-
quently, the error term in the transformed equation is not zero-
mean, and ordinary least squares (LS) would give biased esti-
mates for ln a and k and thus biased predictions. An alternative is to
assume zero-mean, additive error e in the log-transformed model,
avoiding the approximation in (3) and yielding unbiased ordinary
LS estimates of ln a and k. This model would be more appropriate if
the error in the power law output weremultiplicative and the zero-
mean assumption more plausibly applied to log-transformed error.
If the error distribution is to be considered, e.g. to allowmaximum-
likelihood (ML) estimation, logarithmic transformation of the data
alters the distribution of the original error, typically making it less
convenient for ML estimation. For example, if e is assumed to be
Gaussian, the transformed error is log-normally distributed. ML
estimation of a and k from (1), assuming e to be Gaussian, is alge-
braically but not computationally straightforward, as iterative
solution for k is necessary. In any case, with limited data the
assumption of known error distribution, as in an ML estimation
procedure, is often questionable and cannot be adequately tested.

Non-linear least-squares estimation of the parameters a and k in
the original non-linear regression y ¼ axk avoids all these statis-
tical considerations, though at the cost of requiring an iterative
procedure to find a solution. The fitting can be performed using
ordinary non-linear least squares techniques if the variance of the
dependent variable is constant over the range of the independent
variable. If this is not the case, then a weighted version of a non-
linear least-squares method should be used. Generally, the
weights should be equal to the reciprocal of the variance of each
observation (e.g. Croke, 2007).

2.2. Set-membership (bounded-error) approach

Given a small data set, as is common in practice, an alternative
route for exploring the values of, and uncertainty in, the model
parameters and subsequently the model predictions is set-
membership estimation (Walter, 1990; Norton, 1994, 1995;
Milanese et al., 1996). Consider the non-linear regression model in
vector form

y ¼ FðwÞ þ e (5)

where y˛RN contains the N observed output values and F(w) is
a generally non-linear vector function mapping the unknown
parameter vector w˛Rm into the model output. F incorporates the
input (regressors) data as in (1), of course, but here the focus is on
its dependence on the parameters constituting w. In set-
membership estimation, the error vector e is assumed to be
bounded in a given norm, but no other assumptions aremade about
its distribution or statistical properties. In what follows, we assume
that

kekN � 3 (6)

where 3 is a fixed positive number. In other words, the largest
individual error is assumed to be bounded by � 3, so � 3� ei � 3for
i ¼ 1,., N. A measurement uncertainty set (MUS), containing all
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