
SoftwareX 7 (2018) 234–244

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

The eclipse integrated computational environment
Jay Jay Billings a,b,*, Andrew R. Bennett a,c, Jordan Deyton a,d, Kasper Gammeltoft a,e,
Jonah Graham f, Dasha Gorin a,g, Hari Krishnan h, Menghan Li i, Alexander J. McCaskey a,
Taylor Patterson a,j, Robert Smith a, Gregory R. Watson a, Anna Wojtowicz a,k

a Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
b The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, 444 Greve Hall, 821 Volunteer Blvd. Knoxville, TN
37996-3394, United States
c University of Washington, Seattle, WA 98105, United States
d General Electric Company, 3200 North Grandview Blvd Waukesha, WI 53188-1678, United States
e Georgia Institute of Technology North Avenue, Atlanta, GA 30332, United States
f Kichwa Coders Ltd., 1 Plomer Green Avenue, Downley, High, Wycombe HP135 LN, United Kingdom
g Northwestern University, 633 Clark Street Evanston, IL 60208, United States
h Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
i Department of Computer Science and Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States
j Acato Information Management, LLC, 114 Union Valley Rd., Oak Ridge, TN 37830, United States
k Colorado State University, Fort Collins, CO 80523, United States

a r t i c l e i n f o

Article history:
Received 11 June 2017
Received in revised form 13 July 2018
Accepted 16 July 2018

Keywords:
Workflows
Workflow management
Supercomputing
Usability
Eclipse

a b s t r a c t

Problems in modeling and simulation require significantly different workflowmanagement technologies
from standard grid-based workflow management systems. Computational scientists typically interact
with simulation software in a feedback-driven way where solutions and workflows are developed
iteratively and simultaneously. This work describes commonmodeling and simulation activities and how
combinations of these activities formuniqueworkflows.Wepresent the Eclipse Integrated Computational
Environment as a workflow management system and development environment for the modeling and
simulation community. Examples of the Environment’s applicability to problems in energy science,
general multiphysics simulations, quantum computing, and other areas are presented along with its
impact on the community at large.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version ‘next’
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_SOFTX-D-17-00043
Legal code license Eclipse public license 1.0
Code versioning system used Git
Software code languages, tools, and services used Java, OSGi, Eclipse RCP, and Maven
Compilation requirements, operating environments and dependencies Java 1.8 or greater, Maven, and an internet connection for dependencies
If available, link to developer documentation/manual https://wiki.eclipse.org/ICE
Support email for questions ice-dev@eclipse.org

Software metadata

Current code version 2.2.1
Permanent link to executables of this version https://www.eclipse.org/downloads/download.php?file=/ice/builds/2.2.1/
Legal software license Eclipse public license 1.0
Computing platforms/operating systems Windows (32/64-bit), Mac OS/X, Linux (32/64-bit)
Installation requirements and dependencies Java 1.8 or greater
If available, link to user manual. If formally published, include a reference to the
publication in the reference list

https://wiki.eclipse.org/ICE

Support email for questions ice-users@eclipse.org

* Corresponding author at: Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
E-mail address: billingsjj@ornl.gov (J.J. Billings).
@jayjaybillings (J.J. Billings).

https://doi.org/10.1016/j.softx.2018.07.004
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.07.004
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.07.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX%5FSOFTX-D-17-00043
https://wiki.eclipse.org/ICE
mailto:ice-dev@eclipse.org
https://www.eclipse.org/downloads/download.php%3Ffile%3D/ice/builds/2.2.1/
https://wiki.eclipse.org/ICE
mailto:ice-users@eclipse.org
mailto:billingsjj@ornl.gov
https://twitter.com/@jayjaybillings
https://doi.org/10.1016/j.softx.2018.07.004
http://creativecommons.org/licenses/by/4.0/


J.J. Billings et al. / SoftwareX 7 (2018) 234–244 235

Notice of copyright

This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by accepting
the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or al-
low others to do so, for US government purposes. DOEwill provide
public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/
downloads/doe-public-access-plan).

1. Motivation and significance

In previous work, Billings et al. interviewed modeling and sim-
ulation subject matter experts to compile a list of requirements for
implementing and using these kinds of applications. In the process,
they discovered that many of the difficulties inherent in using
high-performance modeling and simulation software fall into five
distinct categories [1]. These activities, detailed in Section 1.1,
include (1) creating input, (2) executing jobs, (3) analyzing results,
(4) managing data, and (5) modifying code. There are many tools
that address these problems individually, but the same research
found that the excess number and specialization of these tools also
contribute to the learning curve.

Previous efforts to address these five issues have resulted in
general-purpose scientificworkflow tools like Kepler [2] ormyopic
tools that satisfy only a single set of requirements for a single
piece of software or a single platform. These are opposite extremes,
but a middle-of-the-road solution is also possible. A workflow en-
gine could be developed that limits its scope to high-performance
computing (HPC) and to the set of possible workflows associated
with the five previously mentioned activities. With only minor
additional development, a rich application programming interface
(API) could be exposed so that highly customized solutions could
still be made based on this limited workflow engine.

It is not clear which, if any, of these solutions is better than
the others, and practical requirements will ultimately dictate the
path of a project’s progress. This work considers a middle ground
solution and presents the Eclipse Integrated Computational Envi-
ronment (ICE) as proof that it is possible to create such a system.
Specifically, the work described here shows that

• modeling and simulation activities can be described in a
succinct workflow model (see ‘‘Workflow Model’’);

• an architecture for such a workflow system can satisfy the
model of workflows in an extensible way (see ‘‘Software
Architecture’’); and

• such a system is applicable to a suite of problems in energy
science, including virtual battery simulations and additive
manufacturing, among others (see ‘‘Illustrative Examples’’).

This section concludeswith an introduction to the ICEworkflow
model. Section 2 details the software from an architectural per-
spective, and Section 3 provides a set of comprehensive examples.
A presentation of the impact is included in Section 4, and details
on obtaining sample code are provided in Section 5.

1.1. Workflow model

ICE’s workflowmodel is based on making it easier for scientists
to create input, launch jobs, analyze results, manage data, and
modify code. Many scientists would most likely find these activi-
ties difficult for all codeswithwhich they lack experience, whereas
with their own codes – or those with which they are most familiar
– these tasks may be so simple that they are taken for granted.

Any particular combination of these activities across one or more
scientific software package or code results in a unique workflow.
Such aworkflow is normally, but not always, requested by a human
user and orchestrated by a workflow management system.

The most obvious workflow for any individual simulation code
or collection of codes is to string the activities together, where the
user’sworkflow is to create the input, launch the job, perform some
analysis, and manage the data—possibly modifying the code in
the process. However, there are many other combinations, includ-
ing re-running jobs with conditions or modifications or analyzing
someone else’s data.1

Creating input is the process of describing the physical model
or state of a system that will be simulated. This could include
creating an input file(s) or making calls to an external process
to configure a running program. In most situations, a computa-
tional scientist will modify existing input or create new input from
a template. ‘‘Input’’ generally includes run time parameters for
the simulation framework (e.g., tolerances); configuration options
(e.g., data locations, output locations, module configurations);
properties of the materials to be simulated; and a discretization
of the simulation space (e.g., mesh, grid, particle distribution). The
collection of all required input can be quite large and may go by
many names, including ‘‘input set’’, ‘‘input package’’, ‘‘problem’’, or,
simply, ‘‘input’’. Often, the set of input files will be described in a
‘‘main’’ input file that acts as a kind of manifest to describe – and
provide links to – all necessary information for a given problem.

In this work, it should be assumed – unless otherwise noted –
that ‘‘input’’ refers to the entire set of input, not to a single file.

Executing jobs, or ‘‘running the workflow’’ in this context, is
the process of performing calculations using a simulation code or
framework based on known variables from the input. These are
typically run locally for small jobs or for development. Large simu-
lations, on the other hand, typically require a large amount of hard-
ware resources. These resources are usually off-site (i.e., physically
unavailable to the user) and are accessed remotely through Secure
Shell (SSH) connections or similar protocols. Remote execution
requiresmoving the input in advance of the execution and copying
ormoving the output to the user’s machine. Inmany cases, though,
the output is too large to move to the user’s local machine.

Local and remote jobs are often monitored to ascertain a job’s
status. This monitoring could be a simple check as to whether or
not the execution has completed, or it could involve monitoring
the output of individual quantities to examine the calculation state.
The latter is often used to detect calculation errors that will result
in incorrect results. If such problems are found, the job is typically
canceled (‘‘killed’’) to save compute resources and is then re-run
later.

Local jobs in ICE are executed using standard Java system calls.
Remote jobs are launched only through SSH connections on remote
machines. This includes direct SSH command execution on clusters
and proxy connections through a pilot service on large Leadership-
class supercomputers. Services such asGlobusGRAMandBosco are
not supported, but the SSH command execution includes extensive
support for numerous batch and queuing systems. The Eclipse
Parallel Tools Platform (PTP) is used to create all remote SSH
connections, regardless of the target machine [3].

In this work, it should be assumed – unless otherwise noted
– that ‘‘executing a job’’ includes monitoring that job in one or
more ways, possibly including real-time updates to visualizations.
It is also important to note that executing a job is not the same as
executing a workflow. Executing jobs specifically refers to launch-
ing simulations, whereas executing a workflow could be some-
thing different such as generating input or post-processing results.

1 The authors have identified many unique combinations that define workflow
‘‘classes’’. When possible, every effort is made to give the classes colloquial names
such as ‘‘The Re-Run’’ or ‘‘The Graduate Student’’.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


Download English Version:

https://daneshyari.com/en/article/6964938

Download Persian Version:

https://daneshyari.com/article/6964938

Daneshyari.com

https://daneshyari.com/en/article/6964938
https://daneshyari.com/article/6964938
https://daneshyari.com

