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A B S T R A C T

A novel intervention model that analyzes time-series crash data was recently introduced in the road safety
statistical field. The model allows the computation of components related to direct and indirect treatment effects
using a linearized time-series intervention model. The isolation of a component corresponding to the direct
treatment effects, known as the crash modification function (CMFunction), enables the assessment of safety
countermeasures over time. To gain new insights into how crash counts are influenced by covariates and to
account for the fact that many components affecting crash occurrence are not easily available (unobserved
heterogeneity), the linear intervention models with random parameters are implemented to evaluate the safety
impacts of a specific treatment. Both matched-pair and full random parameter models were applied. In addition,
the analysis was carried out in a multivariate context to account for possible correlation between dependent
variables. The safety treatment selected for this study was the Intersection Safety Device (ISD) program im-
plemented in the City of Edmonton (Alberta, Canada). The safety impacts were estimated by assessing the
change in crash severity (property-damage-only vs. fatal-plus-injury) over time. Overall, the results showed a
lower deviance information criterion (better goodness of fit) of the multivariate linear intervention model with
random parameters compared to the univariate form with fixed parameters. The difference of the indexes of
treatment effectiveness between the proposed modeling framework and the univariate model with fixed para-
meters was estimated up to 2.7%, which indicates the importance of accounting for unobserved heterogeneity.

1. Introduction

A variety of analytical methods have been employed to analyze
crash counts (Lord and Mannering, 2010; Mannering and Bhat, 2014).
Recently, crash data modeling has utilized increasingly sophisticated
statistical techniques to uncover the relationships between crash oc-
currence and road characteristics while accounting for the randomness
and any unobserved heterogeneity in the data. The main outcome from
the modeling process is typically a regression model that produces an
estimate of the expected crash frequency for a location based on the
traffic exposure (volume) and site-specific traffic and geometrical
characteristics, i.e., a safety performance function (SPF). Traditionally,
the techniques used to develop SPFs have accounted for Poisson var-
iation (crashes are random, discrete, nonnegative, and sporadic events)
and extra-Poisson variation due to potential population heterogeneity
that leads to over-dispersion (Miaou, 1994; Hauer, 1997).

In addition to the Poisson error structure, other count data dis-
tributions have been proposed to deal with specific crash data issues
(Lord and Mannering, 2010; Mannering and Bhat, 2014). Recently,
important advancements in the field have been brought about by
adopting new modeling techniques that are able to address issues other
than the choice of the best error structure for crash counts. These
techniques mainly focus on gaining new insights into how crash counts
are influenced by a variety of factors captured by the model’s covari-
ates.

To this end, some researchers have focused their attention on novel
modeling forms (Pawlovich et al., 2006; Li et al., 2008; Park et al.,
2010; El-Basyouny and Sayed, 2011). In particular, a novel model form
for panel data has been introduced in road safety statistical analysis (El-
Basyouny and Sayed, 2011, 2012a,b). The model allows the computa-
tion of components related to direct and indirect treatment effects
under a linear intervention SPF. The isolation of a component

https://doi.org/10.1016/j.aap.2018.08.007
Received 13 November 2017; Received in revised form 3 August 2018; Accepted 6 August 2018

⁎ Corresponding author.
E-mail addresses: emanuele.sacchi@usask.ca (E. Sacchi), basyouny@ualberta.ca (K. El-Basyouny).

Accident Analysis and Prevention 120 (2018) 114–121

0001-4575/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00014575
https://www.elsevier.com/locate/aap
https://doi.org/10.1016/j.aap.2018.08.007
https://doi.org/10.1016/j.aap.2018.08.007
mailto:emanuele.sacchi@usask.ca
mailto:basyouny@ualberta.ca
https://doi.org/10.1016/j.aap.2018.08.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aap.2018.08.007&domain=pdf


corresponding to the direct treatment effects enables assessment of the
effectiveness of a safety countermeasure in terms of reducing collisions
while isolating the effects of local (site-related) environmental factors.

The form, which makes use of linear slopes, was developed to deal
with both immediate and gradual treatment impacts while accounting
for countermeasure implementation, time effects, traffic volumes, and
the effects of other covariates representing various site characteristics
(Li et al., 2008; El-Basyouny and Sayed, 2011). Moreover, Park et al.
(2010) extended the intervention model to include multivariate de-
pendent variables with multiple regression links and proposed an al-
gorithm for the computation of the treatment effectiveness index to
determine the efficacy of the countermeasure. Other recent studies have
also focused on multivariate spatial analysis to model crash frequency
(Huang et al., 2017; Cheng et al., 2018).

Another important model advancement is using random parameters
models that can account for components affecting crash occurrence but
not easily available to the analyst (Anastasopoulos and Mannering,
2009; El-Basyouny and Sayed, 2009; Erdong and Tarko, 2014; Barua
et al., 2015; Emine et al., 2015). Random parameters models have the
potential to overcome inherent deficiencies of current crash records and
other data sources by explicitly accounting for unobserved hetero-
geneity among different road sites to provide more precise inference.
Random parameters count models were first introduced to the road
safety literature by Anastasopoulos and Mannering (2009), who used a
simulation-based maximum likelihood method for parameter estima-
tion. These models can be structured to account for heterogeneity
among specific groups of locations that share common features (mat-
ched-pairs) or to allow each parameter to vary across all locations (full
random parameters) (Mannering et al., 2016). For completeness, it is
important to mention that some research has also explored possible
causes of the heterogeneity using a particular case of random para-
meters models (i.e., random effects) which assumes that the true means
being estimated at the different sites are not identical but follow the
normal distribution around a linear predictor such as a SPF (residual
heterogeneity). This approach can also be applied when a group of
treatment sites is clustered into N pairs or corridors, similar for traffic,
geometric and environmental conditions and, therefore, a common
mean can be assumed among matched sites (Mannering et al., 2016).

Overall, linear intervention models have been investigated and ap-
plied mostly in the context of univariate studies to account for the
unobserved heterogeneity. Hence, there is a need to estimate the ef-
fectiveness of safety countermeasures by incorporating the multivariate
nature of crash counts while developing linear intervention models
with random parameters. Spreading the application of random para-
meters within the framework of multivariate linear intervention models
would represent an important advancement to road safety assessments,
with the ultimate goal of improving the estimation of treatment effec-
tiveness.

To this end, this study focuses on applying this advanced statistical
framework to a specific treatment implemented in the City of
Edmonton, Alberta, Canada. The safety treatment selected was the
Intersection Safety Device (ISD) program. ISD program consists of
cameras that combine red-light running enforcement and speed en-
forcement at signalized intersections. Although ISD cameras are similar
to red-light cameras (RLCs), the addition of speed enforcement can
have an influence on the intersection’s safety performance as it target
drivers who are speeding through the intersection and drivers who
enter the intersection after the red‐light. The effectiveness of RLCs has
been extensively investigated in the literature (see for instance Council
et al., 2005; Shin and Washington, 2007; Lord and Geedipally, 2014).
However, the safety impacts of ISD cameras have not been as widely
studied. Hence, in this study the safety impact of ISDs was estimated by
assessing the change in property-damage-only and severe (fatal-plus-
injury) crashes using an observational before-after (BA) study design.

2. Linear intervention model

Consider a BA study in which crash data are available for a rea-
sonable period of time before and after an intervention at treatment and
comparison sites. Let Yit denote the crash count recorded at location i
(i=1, 2, …, n) during year t (t=1, 2, …, tB, tB+1, …, tB+tA), where tB
represents the last year before treatment and tA represents the number
of years after treatment. To introduce the linear intervention model, let
Ti denote the treatment indicator (1 for treatment sites, 0 for compar-
ison sites), tB,i+1 the intervention year for the ith treatment site and its
matching comparison group, Iit the time indicator (equals 1 in the after
period, 0 in the before period), and V1,it, V2,it the annual average daily
traffic (AADT) at the major and minor approaches (for intersections),
respectively.

2.1. Univariate model

For a Poisson-lognormal intervention (PLNI) model, Yit are assumed
to be independently distributed (El-Basyouny and Sayed, 2012a, b):

Yit|λit ∼Poisson(λit), (1)

ln(λit) = ln(μit) + εi, (2)

ln(μit) = α0 + α1Ti + α2t + α3[t- (tB,i + 1)]Iit + α4Tit + α5Ti[t - (tB,i +
1)] Iit + α6TiIit + β1ln(V1,it/V2,it), (3)

with

εi ∼ Normal(0, σ2ε), (4)

where α1 represents the difference in log crash count between treated
and comparison sites, α2 represents a linear time trend, α3 represents
the slope due to the intervention, α4 and α5 respectively allow for dif-
ferent time trends and intervention slopes across the treated and com-
parison sites, α6 accounts for a possible sudden change (drop or in-
crease) of crashes at treated sites in the post-intervention period
(usually referred to as the “jump” term), V1,it and V2,it respectively
denote the AADT at the major and minor approaches (for intersections)
with β1 the exposure coefficient of the ratio of AADTs between major
and minor roadways (Wang et al., 2006), εi accounts for random effects
for latent variables across the sites, and σε represents the extra-Poisson
variation.

2.2. Multivariate model

For a collision count of severity level k (k=1, 2,…, K), multivariate
analysis can be conducted to understand the relationship between se-
verity levels (Park et al., 2010). In this case, the PLNI model in Eq. (3)
remains the same except the superscript k is added to the coefficients.
However, to account for the correlation among crash counts of different
severity levels at site i, it is assumed for random effects that:

εi = (εi1, εi2,…, εiK) ∼ NK (0, Σ), (5)

where Σ is a covariance matrix in which the diagonal element σkk re-
presents the variance of εik and the off-diagonal element σjk represents
the covariance of εij and εi

k.

2.3. Random parameters model

Model coefficients can also be allowed to vary randomly from one
group of sites to another (matched pairs). Hence, representing the
variation due to comparison-treatment pairing is possible by allowing
the model coefficients to vary randomly from one pair to another, such
that:

αp(i),j ∼ N(αj, σ2j ), j = 0, 1, 2, 3, 4, 5, 6, (6)

β p(i),1 ∼ N(β 1, σ21), (7)
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