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A B S T R A C T

Many cities are making significant financial investments in cycling infrastructure with the aim of making cycling
safer for riders of all ages and abilities. Methods for evaluating cycling safety tend to summarize average change
for a city or emphasize change on a single road segment. Few spatially explicit approaches are available to
evaluate how patterns of safety change throughout a city due to cycling infrastructure investments or other
changes. Our goal is to demonstrate a method for monitoring changes in the spatial-temporal distribution of
cycling incidents across a city. Using cycling incident data provided by the Insurance Corporation of British
Columbia, we first compare planar versus network constrained kernel density estimation for visualizing incident
intensity across the street network of Vancouver, Canada. Second, we apply a change detection algorithm ex-
plicitly designed for detecting statistically significant change in kernel density estimates. The utility of network
kernel density change detection is demonstrated through the comparison of cycling incident densities following
the construction of two cycle tracks in the downtown core of Vancouver. The methods developed and demon-
strated for this study provide city planners, transportation engineers and researchers a means of monitoring city-
wide change in the intensity of cycling incidents following enhancements to cycling infrastructure or other
significant changes to the transportation network.

1. Introduction

Many cities are seeking ways to increase the number of people who
cycle for transport by making cycling safer for riders of all ages and
abilities. While cycling has numerous physical, environmental and so-
cial benefits, ridership levels remain low in North America (Gordon-
Larsen et al., 2005; Pucher and Buehler, 2008; Teschke et al., 2012). In
Canada and the United States, approximately one to two percent of all
trips are taken by bike (Pucher and Buehler, 2008; Teschke et al.,
2012). Cyclists and potential cyclists frequently cite concern for per-
sonal safety as a significant deterrent to bicycling (Winters et al.,
2011a). Research has shown that infrastructure safety improvements,
such as the installation of bike lanes, bike specific pathways and cycle
tracks, lead to increased bicycle use for transportation (Buehler and
Dill, 2015). Additionally, increased bicycle use results in the ‘safety in
numbers’ effect; as more people cycle, incident rates decrease
(Jacobsen, 2015).

To overcome barriers to increased ridership, cities are making sig-
nificant investments in cycling infrastructure, with many cities making
investments in connected networks of bicycle infrastructure. To be ac-
countable to the public and encourage political will for cycling

infrastructure projects, it is essential that cities monitor and report the
impact of infrastructure on citizens. Safety impacts can bring both
health and economic benefits (Krizec, 2007; Mueller et al., 2015).
Standard approaches to monitoring safety quantify change in incidents
for an entire city (Pedroso et al., 2016) or on a single street segment or
intersection (Chen et al., 2012; Dill et al., 2011). However, approaches
to characterize changes to safety across a city’s transportation network
are limited. Mapping change in safety across the network can show
where increases and decreases in incidents are occurring, and account
for shifts from one street to the next as cyclists alter routes to use bi-
cycling infrastructure.

A challenge in evaluating network level changes in cycling safety is
that cycling collisions are mapped as point locations. Most of the
methods designed for analysis of point data are unsuitable for phe-
nomena constrained to network space (Yamada and Thill, 2004). Over
the past two decades, spatial scientists have extended many traditional
point pattern analysis methods to one dimensional, network space. For
example, Okabe and Yamada (2000) developed a network specific K-
function. Several others have developed kernel density estimation
(KDE) techniques suitable for network based analysis which use net-
work distances instead of Euclidean distances (Borruso, 2005; Okabe
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et al., 2009).
Network constrained KDE has been applied in a variety of dis-

ciplines including analysis of economic activities (Produit et al., 2010)
traffic incidents (Harirforoush and Bellalite, 2016; Xie and Yan, 2008)
and cycling infrastructure planning (Lachance-Bernard et al., 2011).
Network KDE has also been integrated with local measures of spatial
autocorrelation in the analysis of traffic incidents (Xie and Yan, 2013).
While standard KDE has been used as a visualization tool for cycling
incident density (Delmelle and Thill, 2008), the application of network
KDE to studies of cycling incidents is very limited. Network KDE has
potential to advance spatially explicit methods of monitoring change in
cycling incidents throughout a city, which is beneficial when evaluating
the impact of cycling infrastructure. Assessment of infrastructure en-
hancements is often limited to a small set of road segments where
comparisons are made using space for time substitutions. Few spatially
explicit approaches exist for evaluating changes in the distribution of
cycling incidents across a city following improvements to cycling in-
frastructure.

Our goal was to develop a method for monitoring statistically sig-
nificant changes in the spatial and temporal variation of cycling in-
cidents following changes in infrastructure. We analyzed cycling in-
cident data from the city of Vancouver, Canada from January 1, 2009 to
December 31, 2013 according to the following objectives. First, we
compared the suitability of planar KDE versus network constrained KDE
for measuring cycling incident intensity across the study region.
Second, official reports of cycling incidents were used to quantify in-
cident intensity annually from 2009 through 2013. Third, the resulting
network constrained density maps were compared to identify areas
with statistically significant change in the intensity of cycling incidents
following the installation of cycle tracks in downtown Vancouver in
2010.

2. Methods

2.1. Study area

The case study area is the city of Vancouver, Canada with a popu-
lation of 603,000 (Statistics Canada, 2011a) (Fig. 1). Vancouver’s mild
climate is favorable to cycling commuting year round and 4.4% of
workers commute by bicycle (Statistics Canada, 2011b). Monthly
average minimum temperatures are greater than 0 °C in the winter and
monthly average maximum temperatures below 23 °C in the summer,
though the city receives a significant amount of precipitation, averaging
nearly 1200 mm per year (Goverment of Canada, 2010).

2.2. Transportation infrastructure

The city has a wide variety of transportation infrastructure in-
cluding arterial, collector and local streets. Vancouver has been pro-
moting cycling as a safe and convenient mode of transportation since
1988 (Vancouver, 1988). Historically, Vancouver’s primary emphasis
has been the development of local street bikeways (Vancouver, 1999),
but the downtown core, which is our region of focus, has few local
streets that are used as bikeways. In 2009, there were mainly painted
bike lanes downtown. In 2010 dedicated cycle tracks were installed
along two major corridors (Fig. 1). Since the time frame of this case
study there has been substantial investment in a cycling network
downtown; however, we could not extend our study period since cy-
cling incident data beyond 2013 was not available.

Transportation infrastructure data was obtained from the city of
Vancouver’s Open Data catalogue (Vancouver, 2017). The portion of
the network used in this study consists of 1763 street segments and
1119 nodes. The network data was preprocessed to ensure correct to-
pology and subsequently modeled as an undirected graph. Cycling
network data was also obtained from the city’s Open Data catalogue
(Vancouver, 2017).

2.3. ICBC cycling incident data

The cycling incident data were sourced from the Insurance
Corporation of British Columbia (ICBC), the provincial insurance pro-
vider supplying mandatory coverage to all motor vehicles in BC. The
data contains all reported crashes between bicycles and motor vehicles
from 2009 to 2013 (Table 1). The location of incidents are reported as
street addresses or intersections which were geocoded to the street
network.

2.4. Kernel density estimation

In order to detect change in cycling safety, we first mapped spatial
variation in cycling safety along a network in two time periods (t0 and
t1) and then quantified change between t0 and t1.

The standard implementation of KDE is used to produce a smoothed
density surface from point events in two-dimensional space. A grid
surface is superimposed on a study area. A kernel function is used to
calculate the density of point events for the centroid of each cell in the
grid. The kernel function weights points within a circle of influence
according to the Euclidean distance between a centroid and the points.
The general form of a kernel estimator is:
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where λ(s) is the density at the location of measurement s, r is the
bandwidth or smoothing parameter, dis is the distance between s and
point i, k represents a kernel function that weights the value of i at s and
n is the number of events within the bandwidth from location s. A
variety of kernel functions are commonly used including Gaussian,
Quartic, and Epanichnekov. We used a Gaussian kernel as it was com-
putationally efficient, though the choice of kernel function has less
impact on the final density surface than the choice of bandwidth
(O'Sullivan and Unwin, 2002; Silverman, 1986).

The challenge with the standard implementation of the KDE for
cycling safety is that mapping to planar space tends to be good for
identifying hot spots of safety concern at intersections, but linear fea-
tures along road corridors can be missed due to the circular geometry of
bandwidths. Constraining a kernel density estimator by a network uses
distances along the network as opposed to Euclidean distance for
creating the bandwidth (Fig. 2).

The general form of a network constrained kernel estimator is:
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where r and dis are measured over the network. The resulting intensity
value is based on linear units instead of areal units. As for standard
KDE, the choice of kernel function k for network KDE is less important
to the resulting density estimate than the choice of bandwidth r (Xie &
Yan, Kernel Density Estimation of traffic accidents in a network space,
2008).

Two primary methods have been developed for network constrained
KDE, differing in their choice of the basic spatial unit (BSU) of analysis.
One method overlays a grid on the study area and uses a grid cell as the
BSU (Borruso, 2008; Produit et al., 2010). The second method attempts
to divide the network into segments of equal length and uses these as
the BSU (Xie and Yan, 2008). The division of a network into basic
spatial units of equal length is non-trivial and results in residual seg-
ments which are shorter than the defined lixel size (Xie and Yan, 2008).
Furthermore, as the underlying network changes, such as through the
construction of new streets or cycling paths, the absolute position of
lixels within the network may not be consistent between two time
periods. We elected to use the grid cell as our basic spatial unit as it has
the advantage of producing a surface where the location of grid cells is
invariant with respect to changes in the underlying network over time.
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