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a b s t r a c t

The spread of cryogenic liquid due to a limited period of release is investigated for the first time to clarify
the unclear conventional concept regarding two release types: continuous and instantaneous release.
The physical phenomenon is described by equations involving the volume, radius and height of the liquid
pool, and there are three governing parameters: the evaporation rate per unit area, a release time, and a
spill volume. As a result of the perturbation solutions, the combined model, which consists of the
continuous model and the subsequent instantaneous model, is necessary for a large spill source rate,
whereas the continuous model is only required for a small spill source rate. This combined release model
is more realistic than the instantaneous release model, and it is shown that the combined model and the
continuous model are clearly distinguished in the coordinate system of the release time and the spill
volume using the analytical feature of the perturbation solution.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Because the release of flammable materials in a petro-chemical
plant likely leads to a fire or an explosion, a study of the release and
spread of such materials is essential for the quantitative risk
assessment and risk-based inspection of these plants. The release of
materials can be classified into vapor phase or liquid phase ac-
cording to the phase of the material, and the spread of a released
liquid is more complicated than that of a released gas because
evaporation occurs during the spread of a liquid. The present work
focuses on the release and spread of a cryogenic liquid, such as LNG
and LH2, which is continued work from the previous results (Kim
et al., 2011, 2012) of the authors.

Release can be defined as a loss of containment (American
Petroleum Institute, 2008) within the components or equipment
of several plants; therefore, release corresponds to the case that
some materials contained in the equipment escape and spread into
atmosphere. Spurted liquids can spread via vaporization from the
ground or water, and various models have been developed to treat
the spread. There are three-dimensional models using the full
NaviereStokes equation (Venetsanos and Bartzis, 2005), a shallow-
layer model (Stein and Ermak, 1980; Verfondern and Dienhart,

1997, 2007; Brandeis and Kansa, 1983; Brandeis and Ermak,
1983), and a simple physical model (Kim et al., 2011, 2012;
Briscoe and Shaw, 1980). The simple physical model describes
pool spread in terms of how the pool radius and height evolve in
time. In the simple physical model, the shape of the spreading
liquid has been assumed to be a circular cylinder; however, in other
models this assumption is not necessary. Therefore it can be said
that the simple physical model is not as realistic as the other
models.

The corresponding equations consist of two ordinary differential
equations with respect to time and one algebraic equation.
Vaporization can be modeled based on the thermal energy con-
servation or heat conduction from the surface on which the liquid
expands and by neglecting heat radiation; however, the concept of
constant evaporation rate per unit area has been used to simplify
the evaporation process in most cases.

The aforementioned differential equations used in the spread
model require initial conditions that depend on the type of release.
Release has been generally categorized as instantaneous release
and continuous release. According to API RP 581 (American
Petroleum Institute, 2008), instantaneous release occurs so
rapidly that the fluid disperses as a single cloud or pool, whereas
continuous release occurs over a longer period of time. Therefore, it
can be said that instantaneous release occurs due to an abrupt
destruction of vessels or a similar situation. The case in which the
fluid flows continuously from a small hole in damaged equipment
can be modeled as a continuous release. Mathematically, in the
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spread model of instantaneous release, the parameters regarding
the initial shape of the released liquid are given when the time is
zero; however, all of the parameters are zero at that time in the case
of a continuous release. The spread model of continuously-
released-fluid requires a period of release time that is not neces-
sary in the spread model of an instantaneously-released- fluid. The
continuous model approaches the instantaneous one as the period
of release time becomes infinitesimal with a fixed amount of spilled
volume, similar to the delta function in mathematics; however,
such a definition is unrealistic because there exists a finite period of
release time no matter how rapid the instantaneous release is. In
API RP 581, the instantaneous release corresponds to the case
where a total released mass of liquid is greater than 4536 kg, or a
release time is less than 180 s. When a hole size is less than or equal
to 6.35 mm, the continuous release is unconditionally assumed.

To apply the above concept to engineering design, we require a
clear distinction between the two categories because the release
models affect the next procedures in the quantitative risk assess-
ment, such as the dispersion analysis that treats the movement of a
vapor cloud. The conventional classification for the release types is
unrealistic, and the above quantitative criterion also seems arbi-
trary. In the present work, the spread of cryogenic liquid due to a
limited period of release is investigated for the first time to clarify
the unclear conventional concept regarding the two release types.

2. Governing equations

There are several forces during the spread of liquid. Gravity is
only important for the spread of cryogenic liquid because cryogenic
liquid vaporizes extremely quickly. The governing equations can be
obtained with a slight modification of the previous work (Kim et al.,
2012) of the authors.

dR
dT

¼
ffiffiffiffiffiffiffi
aH

p
(1)

where R e pool radius, m; T e time, s; a e 2gD, m/s2; g e gravity,
m/s2; D e 1 for spills on the ground or 1 � r/rw for spills on water;
r e density of liquid, kg/m3; rw e density of water, kg/m3; H e pool
height, m.

dV
dT

¼ �EpR2 þ b; b ¼ Q
Td

for 0 � T � Td; b ¼ 0 for T > Td

(2)

where Ve pool volume, m3; Ee evaporation rate per unit area, m/s;
b e spill source rate, m3/s; Q e spill volume, m3; Td e period of
release time, s. To complete the model, the following algebraic
equation is required:

H ¼ V
pR2

(3)

In the present work, because the liquid is continuously released
from storage, the following initial conditions can be used:

Vð0Þ ¼ 0; Rð0Þ ¼ 0; Hð0Þ ¼ 0 (4)

Only the spill source rate in Equation (2) is modified to represent
the limited period of release compared to the previous work (Kim
et al., 2012) of the authors.

From Equations (1)e(3), it is understood that the evaporation
rate per unit area, E, the spill volume, Q, and the period of release
time, Td, govern the model equations for spread on the ground. For
simplicity, the spread on the ground is considered in the present
study. To make the governing equations dimensionless, the

following variables are introduced:

v ¼ V
pL3

; r ¼ R
L
; h ¼ H

L
t ¼ T

t
(5)

where v e dimensionless volume; r e dimensionless radius; h e

dimensionless height; t e dimensionless time; and t and L are the
characteristic time and length scales, respectively, defined as

t ¼ Td; L ¼ aT2d (6)

Using the dimensionless variables in Equation (5), the following
non-dimensional governing equations are derived:

dv
dt

¼ �εr2 þ b*; b* ¼
Q

pa3T6d
¼ Q

pL3
for 0 � t � 1; b*

¼ 0 for t >1 (7)

where ε e dimensionless evaporation rate, E/a Td.

dr
dt

¼
ffiffiffi
h

p
(8)

h ¼ v

r2
(9)

The initial conditions become

vð0Þ ¼ 0; rð0Þ ¼ 0; hð0Þ ¼ 0 (10)

From Equations (7)e(10), it can be seen that the dimensionless
number,ε, corresponding to the dimensionless evaporation rate and
the dimensionless spill source rate, b*, are the parameters that can
control the non-dimensional governing equations.

Using Equation (9), Equation (8) is rewritten as follows:

dr2

dt
¼ 2

ffiffiffi
v

p
(11)

Using Equation (11), Equation (7) is decoupled into

d2v
dt2

þ 2ε
ffiffiffi
v

p ¼ 0 (12)

The initial conditions become

vð0Þ ¼ 0; v0ð0Þ ¼ b* (13)

Solving the decoupled governing equation is quite simple
compared to the previous results (Kim et al., 2012).

3. Perturbation solutions

The evaporation rate per unit area of LH2 on a paraffin wax
surface (Verfondern and Dienhart, 2007) varies from approxi-
mately 4.23 � 10�4 m/s to approximately 12.7 � 10�4 m/s. There-
fore, the dimensionless evaporation rate, ε, can be naturally chosen
as the perturbation parameter. The perturbation solutions can then
be expressed in the following forms:

v ¼ v0 þ εv1 þ ε
2v2 þ… (14)

where v0 e zeroth order term, v1 e 1st order term, v2 e 2nd order
term.

Substituting Equation (14) into Equation (12) and equating the
coefficients of up to O(ε4) on both sides, we obtain
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