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The fundamental underpinnings of theGibbs adsorption equation (GAE) are enunciated including sundry choices
for the location of the zero-volume dividing surface. Comparison is made to the finite-volume thermodynamic
analyses of Guggenheim and Hansen. Provided that Gibbs phase rule is properly invoked, only invariant surface
properties appear in theGAE. In the framework of invariant surface properties, both the zero-volume (Gibbs) and
the finite-volume (Guggenheim) treatments of the surface phase give identical results for the GAE, confirming
the thermodynamic generality and rigor of the expression.
Application of theGAE ismade to strong andweak electrolytes, to electrified interfaces (Lippmann equation), and
to surface complexation. Usefulness of the GAE inmolecular simulation of interfaces is outlined. Special attention
is paid to the seminal contributions of Fainerman and Miller in applying molecular-thermodynamic interfacial-
layer models toward predicting adsorption behavior at fluid/fluid interfaces. Conversion of adsorption isotherms
into two-dimensional interfacial-tension equations of state via the GAE is highlighted.
Confusion over interpretation of theGibbs adsorption equation arises primarily because of imprecisemeaning for
adsorbed amounts. Once invariant adsorptions are recognized and utilized, the Gibbs adsorption equation yields
identical results for Gibbs zero-volume surface thermodynamics and for Guggenheim finite-volume surface
thermodynamics.
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1. Introduction

The Gibbs adsorption equation (GAE) stands as one of the corner-
stones of interfacial science [1]. Its strength and elegance are unparalled.
It plays a role in surface-phase equilibria similar to that of the Gibbs–
Duhem equations in bulk-phase equilibria. Essentially all textbooks on
surface and colloid chemistry derive and discuss the expression [2–8].
In spite of rigorous thermodynamic footing, the GAE has been subject
to controversy and to experimental validation [9–17]. The main reason
for continuing discussion [14,18–25] is that Gibbs introduced a “surface
phase” of zero volume considered by many as aphysical. Gibbs recog-
nized that interfaces are regions of space of molecular dimension be-
tween two bulk phases over which densities (energy, entropy, mass,
etc.) vary continuously. The idea of a zero-volume dividing surface
was introduced precisely because the interface thickness far from criti-
cal points is so thin. Nevertheless, objections remain. Both Guggenheim
[26] andHansen [27] introduced surface phases of finite volume leading
to different definitions of surface properties compared to that of Gibbs.
Most, if not all, of the controversy accompanying the Gibbs adsorption
equation, for example, that between Motomura [28] and Good [29]
and that between Aratono et al. [30] and Fainerman and Miller [31],
can be attributed to differences in defining precisely the meaning of
adsorbed amounts.

To clarify and consolidate apparently disparate approaches, we re-
view the GAE adsorption equation from the points of view of Gibbs
[1], Guggenheim [26], and Hansen [27]. The main finding is that all
three approaches give identical results for the meanings of the coeffi-
cients appearing in the GAE, provided that the concept of surface invari-
ants is introduced. A Gibbs invariant quantity is independent of the
location of the zero-volume surface phase (i.e., independent of the
dividing-surface location) while a Guggenheim invariant quantity is in-
dependent of the thickness of the finite-volume surface phase. The ap-
proach of Hansen is that of Guggenheim but with a different choice of
independent variables compared to Gibbs and Guggenheim. Once sur-
face invariants are evaluated in the GAE, all approaches are equivalent.

After introducing surface thermodynamics in the early part of
Section 2, we highlight Guggenheim's approach, followed by that of
Gibbs. We then establish their equivalence. Section 3 deals with use of
surface species versus thermodynamic components. Several applica-
tions of the GAE, including the Lippmann equation for completely polar-
ized interfaces, interfacial-layer models, and surface equations of state,
are presented in Section 4. Section 5 concludes the review. The main
theme is that only surface invariants are experimentally accessible by
macroscopic measurement and, therefore, are thermodynamically
meaningful. In the invariant language, the Gibbs adsorption equation
and the Guggenheim adsorption equation are rigorous and identical.

2. Thermodynamic framework

Consider two equilibrated fluid phases of volumes Vα and Vβ sepa-
rated by a planar interface of area A. Each phase contains c components
that partition between the two phases, and each phase may exchange
heat and work with the surroundings. The first law of thermodynamics
demands that differential changes in internal energy of the entire sys-
temobey the relation dU = Q + WwhereU is the internal energy,
Q is the heat added to the system, W is the work done on the system,
and the symbol denotes a path differential. If, in addition, we consider
reversible heat and work differential exchanges, classical thermody-
namics gives the fundamental relation for the two-phase system

dU ¼ dQrev þ dWrev ¼ TdS−PdV þ dWγ
rev þ

Xc
i¼1

μ idni ð1Þ

where T is the temperature, S is the total system entropy, P the is pres-
sure, V is the total system volume, μi is the chemical potential of compo-
nent i, and ni is the total system moles of component i. We need not

distinguish the temperature and chemical potentials for phases α and
β as they are uniform throughout the system including the interfacial
region. Pressure in Eq. (1) is that corresponding to equilibrium between
phases α and β. If, for example, phases α and β are a single-component
gas and liquid, then P is the vapor pressure. Eq. (1) does not specify the
reversiblework for expansion or contraction of the interface located be-
tween the two phases, dWrev

γ .

2.1. Capillary work

Following others [2,3,5,32], Fig. 1 illustrates a simple system to eval-
uate the reversible capillarywork dWrev

γ . Phases α and β are placed in an
inert rectangular chamber allowing PV work exchange with the envi-
ronment. When the right piston translates an increased distance differ-
ential dx, the two smaller pistons to the left simultaneously compress
the system so as to keep the interface level fixed in the right chamber
(at z = 0). The net result is an expanded interfacial area keeping all
else constant. The normal stress exerted on the right piston is denoted
as PT(z) reflecting the tangential stress profile though the fluid/fluid in-
terface. The total reversible work exchange with the environment is
therefore

dWγ
rev ¼ −wdx

Zþh=2

−h=2

PT zð Þdz−P dVa þ dVb
� �

ð2Þ

wherew and h are thewidth anddepth of the right chamber, andVa and
Vb are the volumes in the left chambers connected to phases α and β.
Since the net result of the pistonmovements is a shift in the system cen-
ter ofmass to the right, volumes are conserved: dVa + dVb + whdx = 0
Accordingly, the reversible work in Fig. 1 is

dWγ
rev ¼ wdx

Zþ∞

−∞

PN−PT zð Þ½ �dz ð3Þ

where the equal bulk pressures in the two phases are labeled as the nor-
mal stress, PN, a constant through the interface, and the limits of the inte-
gral are replaced by infinity since only within molecular distances across
the interface do the normal and tangential stresses differ. The integral in
Eq. (3) is that of Bakker defining interfacial tension [2,3,5,6,8,32,33]

γ ≡
Zþ∞

−∞

PN−PT zð Þ½ �dz ð4Þ

and the product wdx is the differential interface area change, dA. Thus,
Eq. (3) reduces to the desired result

dWγ
rev ¼ γdA: ð5Þ

Reversible work to expand an interface is positive, and vice versa. By
definition, tension is an excess property: namely, the excess stress over
that in the bulk (actually a deficiency of stress that gives rise to the
contractile-skin nature of the interface). Reversible interfacial work
augments PV and mass-exchange work in Eq. (1).

2.2. Interfacial thermodynamics

Substitution of Eq. (5) into Eq. (1) gives the fundamental thermody-
namic relationship for a system of two fluid phases, α and β, separated
by an intervening interfacial phase labeled below as γ

dU ¼ TdS−PdV þ γdAþ
Xc
i¼1

μ idni: ð6Þ
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