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a b s t r a c t

In patients with type 1 diabetes mellitus, insulin sensitivity is a parameter which strongly affects insulin
therapy. Due to its time-dependent variation, this parameter can improve the strategy for automatic
closed-loop blood glucose control. The aim of this work is to estimate the insulin sensitivity of patients
with type 1 diabetes mellitus based on measured blood glucose concentrations. For this, an Extended
Kalman Filter is used, based on a simplified version of the well-known Sorensen model. The compart-
ment model of Sorensen was adapted to the glucose metabolic behaviour in diabetic Göttingen Minipigs
by means of experimental data and reduced by neglecting unobservable state variables. Here, the Ex-
tended Kalman Filter is designed for simultaneous state and parameter estimation of insulin sensitivity
using the insulin infusion rate and the meal size as input signals, and measurements of blood glucose
concentration as output signal. The performance of the Extended Kalman Filter was tested in in silico
studies using the minipig model, and is analysed by comparing the output signal of the filter with
measurement data from the animal trials.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Diabetes mellitus

Diabetes mellitus is a widespread metabolic disease with in-
creasing prevalence. It is characterised by unphysiologically high
blood glucose concentration levels ≥126 mg/dl (7 mmol/l) in
fasting state or ≥200 mg/dl (11.1 mmol/l) in oral glucose tolerance
tests by an increased HbA1c fraction ( > )6.5% indicating increased
blood glucose levels on a longer time scale. According to the World
Health Organization about 347 million people suffer from diabetes
mellitus. Moreover, according to the International Diabetes Fed-
eration, numbers are expected to increase up to 552 million by
2030 (Shaw, Sicree, & Zimmet, 2010). About 10% of patients suffer
from type 1 diabetes (T1D) mellitus. In T1D patients, a deficiency
of insulin producing pancreatic β-cells and a concomitantly high
blood glucose levels can lead to secondary complications of dia-
betes, unless treated by adequate exogenous insulin therapy. Sec-
ondary diabetes complications may affect the heart, blood vessels
and the peripheral nervous system, and may finally lead to, for
example, cardiovascular disease or lower limb amputation.

An artificial pancreas (AP) has the potential to alleviate

secondary diabetes complications by introducing a tight control of
blood glucose levels. The basic concept is to automate (or semi-
automate) the application of insulin in a system, consisting of
three main components: a blood glucose sensor, a programmable
insulin pump, and a control algorithm that calculates insulin in-
fusion rates, based on the sensor data. Despite ongoing research
over about 40 years, no fully automated AP is yet available. It is
suggested that the main barriers to be overcome for a successful
AP are of a technological nature (Heinemann, Benesch, & DeVries,
2011). For example, besides continuously monitoring blood glu-
cose sensors and fail-safe insulin infusion pumps, the AP has to
rely on robust feedback control algorithms that can handle intra-
and interindividual variability in patient parameters, as well as
time-varying and nonlinear effects, while also rejecting external
disturbances of glucose metabolism. To avoid unnecessary con-
troller over-conservatism, as seen in e.g. −∞ controller design
procedures (Skogestad & Postlethwaite, 2007), the goal of an AP
feedback control algorithm should be online controller adaptation
based on physiological models of the pathological glucose meta-
bolism. An important and time-varying metabolic parameter is the
insulin sensitivity; this has been recently proposed as a suitable
parameter for controller adaption (Hinshaw et al., 2013). A model
applied in an AP scenario should be able to estimate internal states
or parameters of the glucose metabolism with the required accu-
racy, while limiting model complexity.

The aim of this work is to present a new method for online
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reconstruction of insulin sensitivity as an important metabolic
parameter by means of an Extended Kalman Filter (EKF). As a
basis, the well-known physiological model by Sorensen (1985) is
used, which was adapted to the metabolic behaviour of diabetic
Göttingen Minipigs in Lunze (2014) and Lunze et al. (2014).
Compared to other metabolic models, such as the Bergman
“minimal model” (Bergman, Phillips, & Cobelli, 1981) from 1981, or
the more recent ones by Dalla Man, Raimondo, Rizza, and Cobelli
(2007) and Hovorka et al. (2004), the Sorensen model showed
very good dynamic behaviour with respect to blood glucose and
blood insulin trajectories in an in silico study (Lunze, 2014). A
possible reason is that the Sorensen model also takes the insulin-
counteracting hormone, glucagon, into consideration. The non-
linear model consists of 13 compartments and 22 coupled differ-
ential equations and was intended to optimise the insulin therapy
of T1D patients; this was the rationale to use the Sorensen model
as a basis for our observer-based design.

1.2. State-of-the-art blood glucose estimation

Several model-based approaches for T1D estimation and ther-
apy guidance have been published. One such approach is collec-
tively known as the bolus calculator. In recent bolus calculators
(for an overview see, e.g. Zisser et al., 2008), the size of an ap-
plicable insulin bolus is calculated based on an estimate of the
meal size and the insulin-to-carbohydrates ratio. Further adjust-
ments of the insulin bolus are proposed based on the measured
blood glucose or the remaining nonactivated insulin in the body.
Since patients are not always able to accurately estimate the size of
a meal, it is preferable to employ estimates of postprandial glucose
dynamics in the approaches for T1D estimation and therapy gui-
dance (Boiroux et al., 2015). Therefore, a continuous estimation of
internal states and selected parameters by use of input (insulin,
meal size)–output (blood glucose) measurements is required. The
recursive estimation of future glucose concentration based on low-
order linear model is presented by Eren-Oruklu, Cinar, Quinn, and
Smith (2009), whereas a stochastic modelling approach is pre-
sented by Compte et al. (2010). Schiavon, Dalla Man, Kudva, Basu,
and Cobelli (2014) presented a new index of insulin sensitivity that
is based on the solution of forward dynamics and is validated with
respect to in silico trials. In an AP automation approach, state and
parameter information are highly valuable. The states could be
used for model-based or model predictive control, whereas the
time-varying parameter information can be used for controller
scheduling techniques.

Few reports on observer-based estimation of glucose metabo-
lism are available. In Eberle and Ament (2012), the authors present
an observability analysis for the simple Bergman model, followed
by the design of an Unscented Kalman Filter (UKF) validated in
simulations and with experimental data. In Szalay et al. (2014), the
authors compare different UKF designs based on the Hovorka
model (Hovorka et al., 2004), the performance of which has been
validated in in silico studies only.

1.3. Structure of the paper

In contrast to previous approaches, our work focuses on the
design of an EKF which is based on the detailed Sorensen model
and reduced in model-order to obtain a suitable observable form:

� Section 2 describes the Sorensen model which has been
adapted to the glucose metabolism in diabetic Göttingen Mini-
pigs (see also Lunze, 2014; Lunze et al., 2014).

� The results of the observability study are presented in Section 3
including the application of model-order reduction which lead
to the derivation of a novel nonlinear model suited for observer

design.
� Section 4 describes the EKF design, its implementation and the

in silico validation. The proposed estimator is extended to
estimate the time-varying parameter of insulin sensitivity
online.

� In Section 5, the filter performance is evaluated when applied to
experimental in vivo measurement data with diabetic Göttingen
Minipigs.

� Finally, the results are discussed in Section 6.

2. Glucose metabolism model

As mentioned, the design of the EKF was based on the Sorensen
model adapted to the glucose metabolic behaviour of diabetic
Göttingen Minipigs (Lunze et al., 2014). The basis of the Sorensen
model is the blood circulation model depicted in Fig. 1. The model
consists of three subsystems describing the blood circulation, the
interstitium and the gastro-intestinal tract (shown in Fig. 2). Here,
we use a blood circulation model that consists of 12 ordinary
differential equations (ODEs). The blood circulation model consists
of three main compartments. These interconnected compartments
are insulin, glucose and the hormone glucagon, appearing in
plasma (heart, brain, lung, kidneys, gut), liver and muscle/adipose
tissue. As indicated in Fig. 2, interstitium and gastro-intestinal
tract models are connected to the blood circulation model by
means of the subcutaneous insulin appearance rate rISC(t) and
intravenous glucose appearance rate ( )r tGGA , respectively. External
inputs to the model are subcutaneous Usc(t) or intravenous Uiv(t)
insulin infusion rates. Moreover, ( ) = ( ) = ( )Γ Γ Γ ΓS t r t r r tP P

N
P P
B

P P is the
pancreatic glucagon infusion rate, which is given by the pancreatic
glucagon production ( )Γr tP P

N , normalised to the basal rate by ΓrP P
B .

Further external inputs are the orally and intravenously applied
glucose rates, denoted by Doral(t) and Div(t), respectively.

2.1. Blood circulation model

The basis for the blood circulation model is a compartmental
approach. The general compartment is divided into a vascular
(blood) and an interstitial (bloodless) volume space denoted by
indices V and I, respectively. By assuming a homogeneous mass
distribution over the whole compartment and denoting X(t) as the
mass distribution of a substance (glucose G, insulin I or glucagon
Γ) in the compartment i, we obtain the general equations
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(shown in the interaction diagram in Fig. 3). A dashed line is used
to divide the ith compartment into an interstitial and a vascular
volume space. Fig. 1 gives an overview of modelled compartments
and interstitial and vascular volume spaces. In Eqs. (1), a change in
mass over time is due to convection by the blood stream Qi

X (as-
sumed to be constant) and diffusion over the vascular wall. As-
sociated with the diffusion is the time constant Ti

X. In the inter-
stitial fluid space, there is an additional mass inflow and outflow
rin(t) and rout(t), respectively and no convection. Additional vari-
ables in Eqs. (1) are the mass concentration in the inflowing blood
stream Xin(t) and the mass concentration in the outflowing blood
stream XiV. For convenience, the equations of the reduced-order
model are given in Appendix A. As an example for the model
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