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a b s t r a c t

In this paper, three new connections between Wavelets analysis and Statistical Quality Control are
proposed. Firstly, we show that the Discrete Wavelet Transform, using Haar wavelet, is equivalent to the
Xbar-R control scheme. Results concerning the distribution of wavelets coefficients, using others wa-
velets families, are presented, and then a new control chart, called DeWave, is proposed, in order to
monitor the variability of the process. Secondly, the equivalence between the Likelihood Ratio and the
Continuous Wavelet Transform, in terms of estimating the change time, is presented. Finally, we de-
monstrate that the Discrete Wavelet Transform is an equivalent representation of factorial Design Of
Experiments.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial systems are permanently monitored and controlled,
in order to ensure product quality, reduce variability, and, in some
cases, ensure safety operation (e.g. chemical process, nuclear
power plant). Based on signals, which are generally collected from
sensors, several techniques exist in order to detect abnormal
events. Mathematically, this can be achieved by using statistical
approaches and signal processing tools, such as wavelets analysis.

Statistical Quality Control (SQC) (Montgomery, 2005) gathers a
set of methods for the control and optimization of industrial
processes. Control charts are widely used to detect assignable
causes in a process, and thus to reduce the production of non-
conforming products or to avoid dangerous events. The Average
Run Length (ARL) is generally used to evaluate the performance of
these charts. The first control schemes (Xbar-R, Xbar-S) emerged
in 1925, and proposed by Shewhart (1925). Afterwards, EWMA
(Roberts, 1959) and CUSUM (Page, 1954) charts were proposed,
which are more sensitive to small variations. Recently, ideas to
vary control charts parameters (sample size, sampling interval,
control limit coefficient) have been developed extensively by
proposing several techniques, called adaptive control charts, for
more details see Annadi, Keats, Runger, and Montgomery (1995),
Reynolds, Amin, Arnold, and Nachlas (1988), Bai and Lee (1998),

DeMagalhães, Epprecht, and Costa (2001), and Tiplica (2012). On
the other hand, design of experiments is used to optimize the
processes. It may be used either in process development of a new
product or to obtain a process that is robust. Several types of de-
sign of experiments exist: factorial 2k, fractional 2k�q, and others
(Montgomery, 2005).

Wavelets are a mathematical tool used to perform the analysis,
the representation and the synthesis of signals. Wavelets trans-
formation is a projection of the signal on the wavelets bases (Co-
hen, 1992; Daubechies, 1992; Mallat, 1999). Each dilation or
compression of the Mother wavelet provides a scale decomposi-
tion. Each scale is composed of wavelets coefficients. They re-
present the signal at each scale (multi-scale decomposition).
Several wavelets bases exist and are generally grouped by families
(Haar, Daubechies, Symlet, etc.) (Daubechies, 1992). Today, areas of
applications of wavelets are various: Signal and Image processing
(Daubechies, 1990; JPEG2000), manufacturing (Gao & Yan, 2010),
statistics (Abramovich, Bailey, & Sapatinas, 2000), and physics
(Chanda, Kishore, & Sinha, 2005; Wharton, Wood, & Mellor, 2003).
In process monitoring, wavelets are usually used as data pre-
processing tool: Thresholding is a point of view widely used for
handling data to improve FDI (Fault Detection and Isolation). In
Jeong, Chen, and Lu (2003, 2006) authors discussed data reduction
and noise reduction notions. They proposed a data reduction
technique, which they compared with other techniques, such as
Shrinkage. The Shrinkage is a set of de-noising techniques based
on thresholding of wavelets coefficients (Donoho & Johnstone,
1994, 1995; Donoho, 1995). Multi-scale analysis/Scalogram can be
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also used to characterize faults through scales and then classify
them (Chanda et al., 2005; Liu et al., 2010). Many applications use
the time–frequency representation, for example to identify the
corrosion intensity the time–frequency plan was used to localize
the corrosion (Dai, Motard, Joseph, & Silverman, 2000; Wharton
et al., 2003). Wavelet-based methods for fault detection have been
used for various applications, such as machine condition mon-
itoring (Peng & Chu, 2004), bearing faults (Zarei & Poshtan, 2007),
rotary machines (Yan, Gao, & Chen, 2014), gearbox failures (Fan &
Zuo, 2006; Wang & McFadden, 1996), wind turbines (Sun, Zi, & He,
2014), compacts discs (Odgaard, Stoustrup, & Wickerhauser, 2006)
and transmission lines (Liang, Elangovan, & Devotta, 1998). A very
good literature review on Wavelet-based techniques for process
monitoring is done here (Ganesan, Das, & Venkataraman, 2004).

Combination between wavelets and statistical techniques has
been broadly developed in the multivariate context (see Table 1).
Most of the published research papers that we found in the lit-
erature focus on the use of wavelets analysis as data pre-proces-
sing tool, such as de-nonising, data reduction, or feature extrac-
tion, in order to improve the detection performance.

The goal of this paper is to present some original equivalences
between Wavelets transformations and statistical quality control
techniques, such as control chart (fault detection), maximum
likelihood estimator (fault isolation) and Design of Experiments
(control optimization).

The paper is organized as follows: the second section notes the
connection between the control charts (e.g. Xbar-R) and the Dis-
crete Wavelet Transform (DWT); the third section presents the
equivalence between the likelihood ratio test and the Continuous
Wavelet Transform (CWT); and the fourth section concerns the
equivalence between the factorial design of experiments 2k and
the DWT. Finally, the last section concerns conclusions and
perspectives.

2. Wavelets & control charts

Discrete wavelets bases are defined as the discretization of
scale s and translation T parameters of the continuous wavelets
(Meyer, 1993; Daubechies, 1992; Cohen, 1992; Mallat, 1999). Multi-
resolution analysis (Mallat, 1989) is a framework that provides
multi-scale decomposition across filter banks, which is defined by
the scaling functions providing the approximation coefficients
aj(k), and the wavelet functions providing the detail coefficients
dj(k), they are defined as follows:
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Where a x0 = is the original signal of size N 2J= ; j J1, 2, ,∈ { … }; l:
filter length, h: scaling function filter and g: wavelets function
filter; k 1, 2, , 2J j∈ { … }− . The following theorem can be easily de-
rived from the multi-resolution theory and the conditions to
construct orthonormal compactly supported wavelets (Cohen,
1992; Daubechies, 1992; Gao & Yan, 2010). It concerns the prob-
ability distribution of wavelets coefficients (details and approx-
imations). We show that wavelets coefficients present some
interesting distributional characteristics that reflect the original
data. This result will be exploited to propose new control charts.

Theorem 1. Assume X x x x, , , n1 2= [ … ] a signal, where n 2J= , and xi
are independent and identically distributed random variables, defined
as follows: x ,i 0 0

2μ σ⇝ ( ). Consider orthonormal and compactly
supported wavelets (Haar, Daubechies, Symmlet, Coiflet, Discrete
Meyer Wavelet). Multiresolution analysis of X provides wavelets
coefficients distributed as follows:
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which are independent and identically distributed random variables,
j J1, 2, ,∈ { … }.

Proof. The approximation wavelets coefficients, at the first scale,
are
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By the same way, at the second scale
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By the same way, at the higher scales j, we conclude
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The detail wavelets coefficients are defined, at the first scale, as
follows:
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Table 1
Hybrid (StatisticalþWavelets) process monitoring techniques.

Method References

Principal component
analysisþwavelets

Aradhye, Bakshi, Strauss, and Davis (2003),
Bakshi (1998), Lee, Park, and Vanrolleghem
(2005), Lu, Wang, and Gao (2003), Maulud,
Wang, and Romagnoli (2006), Misra, Yue,
Qin, and Ling (2002), Yoon and MacGregor
(2004)

Kernel PCAþwavelets Choi, Morris, and Lee (2008)
Independent component

analysisþwavelets
Lin and Zhang (2005)

Neural networksþwavelets Alexandridis and Zapranis (2013)
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