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Two batch-to-batch model update strategies for model-based control of batch cooling crystallization are
presented. In Iterative Learning Control, a nominal process model is adjusted by a non-parametric,
additive correction term which depends on the difference between the measured output and the model
prediction in the previous batch. In Iterative Identification Control, the uncertain model parameters are
iteratively estimated using the measured batch data. Due to the different nature of the model update, the
two algorithms have complementary advantages and disadvantages which are investigated in a
simulation study and through experiments performed on a pilot-scale crystallizer.
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1. Introduction

Cooling crystallization is a separation and purification process often
performed in batch mode in the pharmaceutical, food and fine
chemicals industries for the production of high value-added products
(Myerson, 2002). In a batch cooling crystallization process, a solution
consisting of a solute dissolved in a solvent is loaded at high
temperature into a vessel called crystallizer, and is subsequently cooled
down. The crystallizer temperature is manipulated by circulating a
cooling medium inside the jackets surrounding the crystallizer. Due to
cooling, the equilibrium concentration of the solution (i.e. the solubi-
lity) is lowered and part of the solute is transferred from the solution
to the solid crystalline phase. The content of the crystallizer is no
longer a clear solution, but a two-phase fluid slurry consisting of the
solution and the solid crystals. The concentration of the solute in the
solution decreases, while the amount of solid crystals increases. When
the final temperature corresponding to the desired yield is reached,
the solid crystals are separated from the solution and the batch ends.

In industrial batch cooling crystallizers, the crystallizer tempera-
ture is often the only process variable that is controlled (Fujiwara,
Nagy, Chew, & Braatz, 2005). The jacket temperature is the manipu-
lated variable used to steer the crystallizer temperature. Since
accurate on-line temperature measurements can be readily obtained,
the crystallizer temperature is controlled in a closed-loop setting. In

“The financial support from the Institute for Sustainable Process Technology
(ISPT) under the grant ISPT PH-00-04 is gratefully acknowledged.
* Corresponding author.
E-mail address: marco.forgione@ec-lyon.fr (M. Forgione).

http://dx.doi.org/10.1016/j.conengprac.2015.04.011
0967-0661/© 2015 Elsevier Ltd. All rights reserved.

this configuration, the desired cooling profile is given as set-point to
a feedback temperature control loop.

However, even when the temperature is effectively controlled, the
crystal product of a batch might not show all the desired properties.
In fact, even though the temperature is an important process
variable, it is not the one most closely related to the crystallization
dynamics. The process variable having the most direct influence on
the crystallization process is the supersaturation, often defined as the
difference between the solute concentration and the solubility at a
given temperature. Supersaturation is the driving force for physico-
chemical phenomena involved in crystallization such as the birth and
the growth of crystals (Myerson, 2002), and its trajectory throughout
the process influences several aspects of the final product including
chemical purity, polymorphic state, crystal size and shape (Barrett,
McNamara, Hao, Barrett, & Glennon, 2010; Sanzida & Nagy, 2013). In
general, operating at too high supersaturation has to be avoided since
it leads to a degradation of the product quality. Conversely, operating
at low supersaturation leads to a slow growth of the crystals and
therefore to a low production rate. A trade-off between product
quality and productivity is often defined by aiming at a constant
supersaturation during the batch time (Fujiwara et al, 2005;
Gutwald & Mersmann, 1990; Mesbah, Nagy, & Huesman, 2012).

In a batch cooling crystallization process, the supersaturation can
be manipulated by changing the crystallizer temperature, since the
latter determines the solubility. Supersaturation control strategies for
batch cooling crystallization have been widely investigated in the
literature (Fujiwara et al., 2005; Nagy, Chew, Fujiwara, & Braatz,
2008; Vissers et al., 2012; Xie, Rohani, & Phoenix, 2002). In general,
supersaturation control has been shown to give better performance
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compared to temperature control only, particularly in terms of con-
sistency of the product quality.

In most of the supersaturation control strategies, a nominal model
of the supersaturation dynamics is used to design the model-based
controller. Therefore, the quality of the model has a direct influence
on the tracking performance that the model-based controller can
achieve. Unfortunately, the models describing the process often
suffer from severe uncertainties. Due to these uncertainties, the
performance delivered by the model-based controller can signifi-
cantly deteriorate in the case of a model-plant mismatch.

This paper investigates the opportunity of using input/output data
collected from previous batches in order to improve the model, and
consequently the performance delivered by a model-based control
solution. In particular a situation is considered in which the con-
centration measurements collected throughout a batch (which are
required in order to compute the supersaturation) are available for
control only at the end of the batch. This situation can occur in an
industrial environment, where the measurements are often obtained
through the off-line analysis of samples collected throughout the
batch. The quality of the model is even more important than in the
case of feedback control. Indeed, feedforward control solutions are in
general more sensitive to model-plant mismatches than the ones
based on on-line feedback.

In Forgione, Mesbah, Bombois, and Van den Hof (2012a, 2012b)
the authors introduced a novel batch-to-batch (B2B) control strategy
conceived in order to track efficiently a supersaturation profile in a
batch cooling crystallization process, under the presence of distur-
bances and model uncertainties. The findings presented in those
previous contributions, which were obtained using a simulation
model of the process, are here complemented with the results of
real experiments performed on a pilot-scale crystallization setup
which confirm the applicability of our method. To the best of the
authors’ knowledge, these are the first B2B control experiment for a
batch cooling crystallization process documented in the literature.

The B2B control strategy exploits the fact that the concentration
measurements are only available off-line, but the temperature
measurements are readily available on-line. In fact, a higher-level
B2B supersaturation control algorithm is combined with a lower-
level feedback PI temperature controller. Based on the desired
supersaturation profile and the off-line concentration measurements
from the previous batches, the B2B algorithm updates a model of the
process dynamics. Subsequently, it uses the updated model in order
to compute an improved reference temperature profile T". This profile
is set as reference to a lower-level PI temperature controller in the
next batch. The role of the PI controller is to suppress the system
disturbances as efficiently as possible in order to decrease their
influence on the supersaturation dynamics.

Two B2B algorithms, namely Iterative Identification Control (IIC)
and Iterative Learning Control (ILC), are presented. While IIC is based
on a parametric model update, ILC performs a more flexible,
nonparametric model correction. Due to the different nature of the
model update, the two algorithms have complementary advantages
and disadvantages, which are investigated in this paper.

The ILC algorithm used in this paper is based on the two-step
procedure first introduced in Volckaert, Diehl and Swevers (2010).
After a batch, the model of the dynamics from the reference
temperature T to the supersaturation S is updated using a non-
parametric additive correction term, which depends on the
difference between the measured supersaturation and the super-
saturation predicted by the model for the previous batch. This
correction term is obtained in such a way that the updated model
matches more closely the actual supersaturation measured during
the previous batch. Subsequently, the improved reference tem-
perature is computed using the updated model in order to
minimize the supersaturation tracking error for the next batch.
In the literature, other applications of ILC for supersaturation

control in batch cooling crystallization have been presented in
Zhang, Nguyan, Xiong, and Morris (2009), Sanzida and Nagy
(2013). In both algorithms, a new temperature trajectory is
designed based on a linear time-varying perturbation model of
the nonlinear supersaturation dynamics. Compared to those
papers, the advantage of the approach presented here is twofold.
First, the presence of a lower-level PI controller, which is an asset
in the presence of disturbances on the temperature dynamics. The
ILC algorithm alone, which is a feedforward control solution, could
not compensate for these real-time disturbances. In addition,
these disturbances could be easily confused by the algorithm with
parts of the actual process dynamics since ILC is based on a non-
parametric model correction. Second, the use of the nonlinear,
first-principles model of the process in the algorithm, as opposed
to the linearized model used in Zhang et al. (2009) and Sanzida
and Nagy (2013), which is an acceptable approximation of the
dynamics only along the time-varying working point. Besides, it
has to be mentioned that while in Zhang et al. (2009) and Sanzida
and Nagy (2013) only simulation results have been reported, in
this paper experimental results are also included.

In the IIC algorithm, estimates of the uncertain physical
parameters are refined after a batch according to a Maximum
a Posteriori criterion which combines the information coming
from the measurements collected during the most recent batch
with the previous parameter estimates. By doing this, the
accuracy of the model increases after each batch, since the
parameter estimates are obtained using an increasing amount of
information. Next, as in the ILC algorithm, the reference tem-
perature T" for the next batch is optimized off-line using the
updated model in order to follow the desired supersaturation
set-point.

The remainder of the paper is organized as follows. First, a model
for the batch cooling crystallization process is presented in Section 2.
Subsequently, the B2B control framework is discussed in Section 3.
The framework is applied in a simulation study in Section 4 and on
the pilot-scale crystallizer in Section 5. Finally, overall conclusions
and directions for future research are discussed in Section 6.

2. The batch cooling crystallization model

A model of the batch cooling crystallization process is pre-
sented in this section. This model is used extensively throughout
this paper. First, it is used in Section 3 for the design of the B2B
control algorithms. Second, the data-generating system used in
Section 4 to represent the crystallizer in the simulation study is a
numerical implementation on this model. Finally, the B2B control
algorithms based on this model are applied on the real pilot-scale
crystallization setup in Section 5.

As previously discussed in the Introduction, in a batch cooling
crystallization process a chemical solution is cooled down in a
crystallizer. The jacket temperature T; is the manipulated variable
used to steer the crystallizer temperature T.! By cooling, the
solubility of the solution is lowered, and part of the solute is
transferred from the solution to the solid, crystalline phase.
Therefore, the concentration C of the solute within the solution
decreases. The batch cooling crystallization process is often repre-
sented using the so-called moment model (Randolph & Larson,

! In practice, the jacket temperature T; is not directly manipulated, but it is
controlled by a low-level control loop. The set-point of the low-level controller is
the variable that is actually accessible (see the description of experimental set-up
in Section 5.1). However, the dynamics of this low-level control loop is usually
much faster compared to the other system dynamics, and for this reason it is
ignored in the modeling.
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