Accepted Manuscript

In-situ synthesis of Molybdenum Sulfide/Reduced Graphene Oxide porous film as robust counter electrode for dye-sensitized solar cells

Junliang Chen, Dapeng Wu, Hongju Wang, Fujuan Wang, Yixin Wang, Zhiyong Gao, Fang Xu, Kai Jiang

PII:	S0021-9797(18)30431-4
DOI:	https://doi.org/10.1016/j.jcis.2018.04.046
Reference:	YJCIS 23511
To appear in:	Journal of Colloid and Interface Science
Received Date:	25 December 2017
Revised Date:	5 April 2018
Accepted Date:	10 April 2018

Please cite this article as: J. Chen, D. Wu, H. Wang, F. Wang, Y. Wang, Z. Gao, F. Xu, K. Jiang, In-situ synthesis of Molybdenum Sulfide/Reduced Graphene Oxide porous film as robust counter electrode for dye-sensitized solar cells, *Journal of Colloid and Interface Science* (2018), doi: https://doi.org/10.1016/j.jcis.2018.04.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In-situ synthesis of Molybdenum Sulfide/Reduced Graphene Oxide porous film as robust counter electrode for dye-sensitized solar cells

Junliang Chen^a, Dapeng Wu^{ac*}, Hongju Wang^{ab}, Fujuan Wang^{ab}, Yixin Wang^{ab}, Zhiyong Gao^{ac} Fang Xu^{ab}, Kai Jiang^{b*}

^aCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China ^bSchool of Environment, Henan Normal University, Xinxiang, Henan 453007, P. R. China ^cHenan Key Lab Boron Chemistry & Advanced Energy Mat, Xinxiang 453007, Henan, Peoples R China ***Corresponding author:** Dapeng Wu, Kai Jiang E-mail: <u>dpengwu@126.com;</u>or <u>dapengwu@htu.edu.cn;</u> Fax/Tel: +86 3733328629;

E-mail: jiangkai6898@126.com Fax/Tel: +86 3733328629;

Abstract

Molybdenum sulfide/reduced graphene oxide (MoS₂/RGO) porous film was in-situ deposited on fluorine-doped tin oxide (FTO) substrates via a one-pot hydrothermal method. Due to the oxygen-containing groups distributing on graphene oxide (GO) surface, the MoS₂ sheets could nucleate and grow taking GO as substrates and the MoS₂/RGO film can be strongly linked to the FTO. Based on the electrochemical investigations, the enhanced cell performance could be ascribed to the improved electrical conductivity, catalytic active sites and electrolyte diffusion rate, which finally contribute to the high catalytic performance on the reduction of Γ/I_3^- couples in the electrolyte. Therefore, the cell adopting as-prepared MoS₂/RGO as counter electrode demonstrated high power conversion efficiencies (PCE) of 7.63 %, which indicates ~14 % enhancement compared with the MoS₂-based (6.68 %) device.

Keywords: Nanomaterials; MoS₂; Graphene; Counter electrode; Dye-sensitized solar cells

Download English Version:

https://daneshyari.com/en/article/6990750

Download Persian Version:

https://daneshyari.com/article/6990750

Daneshyari.com