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a b s t r a c t

MPC is becoming increasingly implemented on embedded systems, where low precision computation is
preferred either to reduce costs, speedup execution or reduce power consumption. However, in a low
precision implementation, constraint satisfaction cannot be guaranteed. To enforce constraint satisfac-
tion under numerical errors, we adopt tools from forward error analysis to compute an error bound on
the output of the embedded controller. We treat this error as a state disturbance and use it to inform the
design of a constraint-tightening robust controller. The technique is validated via a practical im-
plementation on an FPGA evaluation board.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the widespread use of single- and double-precision
floating-point arithmetic in computer architectures, control sys-
tem designers routinely start with the assumption that computa-
tion is performed with infinite numerical precision. The con-
sequence is that the two activities of control system design and its
implementation are often decoupled. This is safe for simple and
well-understood algorithms. The control engineer worries about
high-level issues, such as closed-loop performance, while the
software engineer worries about implementation issues, such as
code efficiency and timing (Teich, 2012).

In addition to high numerical precision, other factors such as
high clock speed and small packaging have become standard
features of modern embedded systems processors. Such advances
in digital electronics (together with the development of sophisti-
cated algorithms) have facilitated the spread of computationally
heavy control schemes in low-cost applications with relatively fast
dynamics. The embedded control community has started explor-
ing the hardware design dimension in order to reduce hardware
costs and increase execution speed by, for example, implementing
algorithms with finite and low precision arithmetic (Con-
stantinides, 2009; Jerez et al., 2014).

It is well-known that low precision, especially if implemented
in fixed-point, allows for much simpler circuits and greater com-
putational speeds (Patterson & Hennessy, 1990). All of the above is
at the expense of increased numerical errors that cannot and
should not be ignored. There is a surprisingly small amount of
theory for the design of such computer-based control systems.
These issues could be considered as part of the emerging science
called cyber-physical systems theory (Wolf, 2009). Cyber-physical
systems are integrations of computation with physical processes
and therefore would also embrace the problem of control algo-
rithm performance under numerical errors.

Model Predictive Control (MPC) is a powerful control scheme
that, due to the necessity of solving an optimization problem every
sampling instant, has only recently found application outside the
process industry. One of the often ignored drawbacks of MPC,
however, is its sensitivity to numerical errors (Hasan, Kerrigan, &
Constantinides, 2013). The use of different discretization methods
has been proven to be an advantage when working with low
precision (Longo, Kerrigan, & Constantinides, 2014). Methods to
avoid variable overflow have been proposed by constraining their
ranges with carefully selected scaling methods (Jerez, Con-
stantinides, & Kerrigan, 2015). However, for these approaches,
stability and constraint satisfaction are not guaranteed and, in
practice, the only solution to this problem is extensive simulation
analysis.

In this paper, we extend the basic idea presented in Suardi,
Longo, Kerrigan, and Constantinides (2014) and we propose a
method to guarantee hard constraint satisfaction of an explicit
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MPC scheme (Bemporad, Morari, Dua, & Pistikopolous, 2002;
Kvasnica & Fikar, 2010) when the algorithm is implemented on a
platform using finite and low precision arithmetic. Compared to
Suardi et al. (2014), this paper adds a detailed algorithmic pre-
sentation, unveiling the machinery required for the robust con-
troller design, adds a detailed implementation on a FPGA platform
and provides experimental results. Furthermore, this paper uses
the design tools presented in Suardi, Kerrigan, and Constantinides
(2015) and Suardi (2014). The idea is to quantify the maximum
error made by the processor when evaluating the control policy.
This is achieved by applying techniques from forward error ana-
lysis (Higham, 2002) to the explicit MPC controller. Considering
the error as an additive disturbance to the plant dynamics, a
controller that is robust to such a disturbance is designed. The
resulting controller will therefore be robust against its own finite-
precision implementation in a true cyber-physical sense. The
proposed method requires the offline solution of an optimization
problem, which is non-trivial but possible to automate. The va-
lidity of the method has been tested experimentally with a hard-
ware-in-the-loop test ring where the controller has been im-
plemented in a Xilinx Zynq Field-Programmable Gate Array (FPGA)
platform. In Section 2 the explicit MPC problem is formulated. In
Section 3 the robust controller design methodology is presented.
The procedure requires the analytical computation of error
bounds, which is described in Section 4. The experimental vali-
dation setup is presented in Section 5 and test results of guaran-
teed robustness and implementation efficiency are discussed in
Section 6.

2. Problem setup

Let us assume that we want to find a discrete-time feedback
control law

κ≔ ( ) ( )u x , 1k k

where  κ →: n m is designed to stabilize and guarantee some
performance for the discretized plant

= + ( )+x Ax Bu , 2k k k1

where n is the number of states, m the number of inputs, and
∈ ×A n n and ∈ ×B n m are the discretized plant matrices. For

simplicity we assume that we want to regulate the system from
the current state x0 to the origin. State and input variables are
subject to the constraints

 ∈ ∈ ( )x u, , 3k k

where  and  are the polyhedral sets

 = { ∈ ≤ } ( )x M x k: , 4an
x x

 = { ∈ ≤ } ( )u M u k: , 4bm
u u

containing the origin in their interior. The constraints on state and
input may be physical or chosen by design. The finite horizon
constrained linear quadratic regulator problem with horizon N is
defined as
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where ∈ ×P Q, n n are positive semidefinite matrices, ∈ ×R n m is a
positive definite matrix, N is the length of the prediction horizon,
f is the set in which the terminal state xN is constrained to lie
and, at sample instant k, the state vector ∈xk

n is either mea-
sured or estimated. Solving (5) yields the optimal open-loop input
sequence ( )⁎u x0 0 , ( ) … ( )⁎

−
⁎u x u x, , N1 0 1 0 , where, as per standard MPC,

the first element ⁎u0 is applied and the optimization is repeated at
every time step in a receding horizon control fashion. MPC relies
on a successive solution of the optimization problem in (5). Such
an optimization problem can be expressed as a parametric
Quadratic Programming (QP) problem for varying parameters x0
defined as

′ + ′ + ′ ( )x Yx U HU x TUmin 6aU
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where the vector = [ ′ ′ … ′ ]′ ∈−U u u uN
Nm

0 1 1 is the vector of deci-
sion variables and matrices H, T, Y, G, W and E are easily obtained
from Q, R and P and by substituting = + ∑ =

−
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(Maciejowski, 2002).
When N, n, and m are small, we can compute an MPC feedback

controller κ explicitly by solving a multi-parametric optimization
problem. In parametric programming, the goal is to find the so-
lution of (6) for a range of parameters values, or equivalently, the
closed form solution ↦ ( )x U x0 0 of (6) for any feasible x0. This
problem could be solved by using the freely available Multi Para-
metric Toolbox (MPT) (Herceg, Kvasnica, Jones, & Morari, 2013)
written for ®MATLAB and the Model Predictive Control Toolbox™
embedded into ®MATLAB . The resulting κ is a continuous piece-
wise affine (PWA) function defined over a polyhedral partition of
the state space. Therefore, computing (1) requires:

1. the solution of a point location problem to determine in which
polytope — defined by a linear inequality ( ≤ )Hx kk — the cur-
rent state xk belongs to

2. the evaluation of a control law of the form

= + ( )u Fx g 7k k

associated with the selected region in step 1.

A variety of algorithms have been proposed to solve the point lo-
cation problem, since this is the most time-consuming task (Jones,
Grieder, & Rakovic, 2006; Monnigmann & Kastsian, 2011; Storace &
Poggi, 2011; Tøndel, Johansen, & Bemporad, 2003). Such algo-
rithms range from simple ones (a sequential search through the
regions of the partition) to more complex ones where the region is
found via a binary search tree. In either case, the solution of the
point location problem and the evaluation of the control law are
operations that have to be performed online on the target
hardware.

If infinite-precision arithmetic was available, the control action
uk could be computed exactly without introducing any numerical
errors, hence complying with the QP problem theoretical guar-
antees such as constraint satisfaction. However, computing uk in a
processor that works with finite precision (typically any processor)
results in the introduction of an error. Such an error is the
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