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a b s t r a c t

Vehicle control systems need to prognosticate future vehicle states in order to improve energy efficiency.
This paper compares four approaches that are used to identify the parameters of a longitudinal vehicle
dynamics model used for the prediction of vehicle tractive forces. All of the identification approaches
build on a standard Kalman filter. Measurement signals are processed using the polynomial function
approximation technique to remove noise and compute smooth derivative values of the signals. Ex-
perimental results illustrate that the approach using multiple Stenlund–Gustafsson M-Kalman filters
(multiple robust and windup-stable Kalman filters) reaches the best performance and robustness in
predicting the vehicle tractive forces.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recent vehicle look-ahead controllers aiming at reduced fuel
consumption and energy-efficient driving strategies require a
prediction of vehicle tractive force ( FxV ) (Back, 2005, pp. 47–49;
Ganji, Kouzani, and Khayyam, 2011; Hellström, Ivarsson, Åslund,
and Nielsen, 2009; Khayyam et al., 2011; Radke, 2013, pp. 11–18;
Shakouri and Ordys, 2014; Wahl and Gauterin, 2013). The vehicle
tractive force acts in the longitudinal direction of the body-fixed
vehicle coordinate system and is the force that is required to
propel the vehicle to the desired speed. Moreover, the vehicle
tractive force determines the fuel consumption of vehicles driven
by combustion engines and the range of electric and hybrid elec-
tric vehicles (Denis, Dubois, Gil, Driant, and Desrochers, 2012;
Grewal and Darnell, 2013). All references mentioned above model
the vehicle tractive force by linear white-box models that result
from differential equations of the vehicle longitudinal and lateral
motion and contain time-invariant vehicle parameters, such as the
vehicle mass, longitudinal drag coefficient, and coefficient of

rolling resistance. However, the vehicle parameters indeed vary
with time and depend on environmental conditions. Therefore,
recursive estimators are required to provide online estimates for
the temporally varying vehicle parameters.

1.1. Related work

Motivated by driver assistance systems and safety controllers,
numerous research efforts have been undertaken to estimate ve-
hicle parameters and in particular the vehicle mass (Bae, Ryu, and
Gerdes, 2001; Fathy, Kang, and Stein, 2008; Han, Kim, Jo, and Huh,
2009; Hong, Lee, Borrelli, and Hedrick, 2014; McIntyre, Ghotikar,
Vahidi, Song, and Dawson, 2009; Rhode & Gauterin, 2012, 2013;
Vahidi, Stefanopoulou, and Peng, 2005; Winstead and Kolma-
novsky, 2005; Yu, Feng, Xiong, and Wu, 2011). Furthermore, De
Bruyne, Van der Auweraer, Diglio, and Anthonis (2011) provide a
recent survey of vehicle mass estimation literature.

Our work reported here, however, was ultimately aimed at
predicting the state: vehicle tractive force. Note that there is a
substantial difference between (vehicle) parameter estimation and
(vehicle) state prediction. Parameter estimation seeks for unbiased
estimates based on given data that are referred to as training data.
The goal in state prediction, however, is to reduce errors of pre-
diction for a horizon of unseen data, called validation data. Split-
ting of data into training data and validation data is known as
cross-validation.

To the best of our knowledge, the only reference that focuses
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on predicting the vehicle tractive force is Rhode (2016), which
serves as the basis of this work.

1.2. Contribution & outline

The problem studied herein is how to design a model that
provides accurate predictions of the vehicle tractive force from
standard vehicle sensor data that contain outliers and periods of
poor system excitation. Outliers cause breakdown of non-robust
estimators (Zoubir, Koivunen, Chakhchoukh, and Muma, 2012),
and poor excitation results in an ill-posed problem that causes
windup (Evestedt and Medvedev, 2006).

Section 2 introduces a vehicle longitudinal dynamics model
that provides the vehicle tractive forces as model outputs using
the states as model inputs. These outputs are given by a drivetrain
model while the inputs arise from a path angle model and vehicle
sensor data.

Section 3 provides a recursive estimator, called polynomial
Kalman smoother (PKS), for local polynomial function approx-
imation which is used to smooth noisy vehicle signals and give
their derivatives as well as smooth path angle estimates. PKS is
ideally suited for vehicle signal smoothing, because PKS preserves
the signal level (flat magnitude filter), exhibits a well-defined
delay, and gives smooth derivatives. The latter property is unique,

because common signal filters (Butterworth, or FIR filters) do not
deliver signal derivatives. To the best of our knowledge, the re-
cursive polynomial function approximation has not been applied
elsewhere to vehicle signals.

Section 4 introduces a novel robust and windup-stable Kalman
filter, called Stenlund–Gustafsson M-Kalman filter (SGMKF) sub-
sequently, to recursively solve the random-walk output error
model in the presence of outliers and periods with poor excitation.
Starting with the well known Kalman filter (KF), Section 4 explains
all the required modifications to add robustness and windup sta-
bility. Moreover, a novel robust recursive scale estimator with low
computationally load is introduced. The presented SGMKF algo-
rithm can be applied to any linear parameter estimation problem,
where the parameters vary on different rate, the measurements
are corrupted by outliers, and the observed system shows periods
with poor excitation. Therefore, SGMKF is a general estimator and
not specifically designed for vehicle tractive force prediction,
which is studied herein.

In Section 5 multiple model estimation (MME) is introduced as
a method to treat uncertainty in choosing Q , which is the covar-
iance of the assumed Gaussian sequel that determines the rate of
variation of the vehicle parameters and is an important tuning
input in Kalman filters. Multiple model estimation gives the result
with highest probability from a bank of parallel robust and

Nomenclature

A measured input matrix
state transition matrix

a measured inputs
A mV

2( ) vehicle cross-sectional area
b measured output
b̂ estimated output
b
∼

output noise
cx longitudinal drag coefficient
d number of outputs
δ Huber tuning constant

bΔ output correction
xΔ parameter correction

det determinant
diag (·) diagonal elements
 expectation
η learning rate
fr coefficient of rolling resistance
R1 covariance of output noise
F NxV ( ) vehicle tractive force
G gear
g m s 2( )− gravitational constant
○ Hadamard product
I identity matrix
iD differential ratio
iG gearbox ratio
I kg mred

2( ) reduced moment of inertia
I kg mW

2( ) wheel moment of inertia
jW wheel: 1-rear left, 2-rear right, 3-front right, 4-front

left, 12-front wheels, 34-rear wheels
k Kalman gain
k number of prediction steps
l number of models
λ forgetting factor

model
m samples
med median

MEDSE median squared error
m kgV ( ) vehicle mass
n number of inputs

rad sE
1ω ( )− engine speed

rad sW
1ω ( )− wheel speed

P covariance matrix
p probability
Pd desired P
pdf probability density function
ψ influence function

radaψ ( ) air approach angle
Q covariance of parameter correction
^ estimated quantile
 rational numbers

kg ma
3ρ ( )− air density

ρ ρ-function
r mW ( ) wheel radius
sgn signum
σ̂ estimated scale
t (s) time
T N mD ( ) differential torque
T N mE ( ) engine torque
T N mG ( ) gearbox torque
θ (rad) path angle

radrθ ( ) road angle
T N mR ( ) rim torque
u evaluation point
v m sV

1( )−

vehicle velocity
wl left window
wr right window
w weight
x parameter
x̂ estimated parameter
x true parameter
x mV ( ) vehicle longitudinal axis
 integer numbers
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