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a b s t r a c t

In this paper, canonical correlation analysis (CCA)-based fault detection methods are proposed for both
static and dynamic processes. Different from the well-established process monitoring and fault diagnosis
systems based on multivariate analysis techniques like principal component analysis and partial least
squares, the core of the proposed methods is to build residual signals by means of the CCA technique for
the fault detection purpose. The proposed methods are applied to an alumina evaporation process, and
the achieved results show that both methods are applicable for fault detection, while the dynamic one
delivers better detection performance.

& 2015 Published by Elsevier Ltd.

1. Introduction

The proper functioning of industrial processes has a profound
impact on production, product quality, and safety. Efficient de-
tection of faults is essential in avoiding performance degradation
and damage to equipment. For these purposes, process monitoring
and fault diagnosis (PM-FD) methods have been widely studied
and implemented in industry. The existing PM-FD methods are
subdivided into model-based and data-driven methods. The
model-based methods have received considerable attention (Bas-
seville & Nikiforov, 1993; Gertler, 1998; Isermann, 2006; Ding,
2013) and found a large number of successful applications in au-
tomotive, aerospace systems, etc., where the first-principle models
or mathematical models are available (Clark, 1978; Gertler et al.,
1995; Ding, Fennel, & Ding, 2004). For large-scale processes like
alumina evaporation process (AEP) (Tang, Yang, & Gui, 2011), ac-
curate physical models are often unavailable. On the other hand,
techniques for routine data collecting, storing and processing have
been significantly improved in past years. Thus, these have given
rise to the extensive development of data-driven methods (Ge &
Song, 2008; Peng, Zhang, Li, & Zhou, 2013; Hu, Chen, Gui, & Jiang,
2014; Chen et al., 2014). Common data-driven methods are based
on multivariate analysis (MVA) techniques, such as principal

component analysis (PCA) and partial least square (PLS), which
have attracted more and more attention from academia and in-
dustry (Qin, 2012). In industry, there are numerous successful
applications of MVA-based methods, e.g. a PCA-based method for
semiconductor manufacturing fault detection (Wise & Gallagher,
1996). In the aluminium smelting industry, a PCA-based method
and its variants have been applied to the performance analysis of a
line of operating cells and to the detection of anode spikes and
anode effects (Tessier, Duchesne, Tarcy, Gauthier, & Dufour, 2008;
Majid et al., 2011). In Ding, Yin, Peng, Hao, and Shen (2013),
modified PLS has been applied to the prediction and diagnosis of
key performance variables of an industrial hot strip mill. The
reader is referred to (Russell, Chiang, & Braatz, 2000; Venkatasu-
bramanian, Rengaswamy, Kavuri, & Yin, 2003; Kano & Nakagawa,
2008; Qin, 2012; Yin, Ding, Haghani, Hao, & Zhang, 2012; Ding,
2014) for a comprehensive literature study.

MVA-based PM-FD methods consist of two major steps: off-line
training and on-line monitoring. The differences between PCA-
and PLS-based methods are that the PCA-based methods only
consider the process measurements in both steps and monitor
changes in the condition of the process, sensors and actuators,
while PLS-based methods are applied to process variables and
output variables (quality variables) or key performance indicators
(KPI), which are on-line unmeasurable or measurable only with a
large time delay. In off-line training, quality data are used to guide
the decomposition of the process data and to extract latent vari-
ables that are mostly relevant to the product quality. In on-line
monitoring, only process variables are available and used to detect
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faults that are mostly related to the product quality variables or
KPIs (Zhang, Hao, Chen, Ding, & Peng, 2015).

When input–output relationship explicitly exists and the two
blocks of input and output data are on-line measurable, canonical
correlation analysis (CCA) technique (Hotelling, 1936) is an effi-
cient tool to design a fault detection (FD) system. However, as a
representative multivariate analysis technique, CCA has been
rarely employed for fault detection. It is the first objective of this
work to deal with fault detection issues for linear static and dy-
namic processes using CCA technique. In the static case, the output
is assumed to be affected only by the current measurements. In
the dynamic case, process input and output data in a time interval
are applied for the detection purpose. CCA-based FD methods can
be viewed as an extension of PCA-based or PLS-based methods for
detecting faults in a process with input and output data. Table 1
presents a tabular comparison between CCA-, PCA-, and PLS-based
methods to clarify our objective.

FD based on residual generation is the state of the art in the
model-based fault diagnosis framework (Chow & Willsky, 1984). In
this paper, a canonical correlation-based residual generation is
first realized by the CCA technique in the data-driven fashion. It is
then applied to FD in static processes. In order to address FD in
dynamic processes, the proposed static method is further ex-
tended to the dynamic version, which is similar with the well-
established dynamic PCA (DPCA)- and dynamic PLS (DPLS)-based
techniques. The last objective of our work is to apply the two
proposed FD methods to the monitoring of an alumina evapora-
tion process.

The rest of this paper is organized as follows. In Section 2, we
briefly introduce the basic ideas and formulate the essential form
of canonical correlation-based residual generation. Subsequently, a
CCA-based FD scheme is proposed in Section 3. Section 4 deals
with the dynamic CCA (DCCA). Noting that the proposed method
for dynamic case is similar with canonical variate analysis (CVA)-
based methods for system identification (Larimore, 1983), we
discuss, in Section 5, about the differences between them. Fur-
thermore, possible extensions of the proposed methods are stated.
In Section 6, the AEP is first described for the case study. It is
followed by the application of both CCA- and DCCA-based meth-
ods to the monitoring of the AEP.

Notation: The notation used in this paper is standard. n de-
notes the n-dimensional Euclidean space, n m× is the set of all
n m× real matrices, and diag ., ,.( … ) is a square diagonal matrix.
rank A( ) denotes the rank of matrix A. iA : ,( ) represents the i-th
column of A. In is an n n× identity matrix. x ,x xμ Σ∼ ( ) denotes
that x is a normally distributed random vector with mean xμ and
covariance xΣ . m2χ ( ) stands for the chi-square distribution with m
degrees of freedom and m n,( ) stands for F-distribution with m
and n degrees of freedom. Let prob m2

1
2χ χ α( > ( )) =α− represents

the probability that m2
1
2χ χ> ( )α− equals α (significance level)

and prob m n,1 α( > ( )) =α− represents the probability that
m n,1> ( )α− equals α.

2. Basic ideas and problem formulation

FD methods based on parity relation have been widely studied
(Chow & Willsky, 1984; Ding, 2013). In those methods, residual
generation is an essential step. In Gertler (1998), the residual
generation is described in the following general form:

k k kr V u W y ,ϕ ϕ( ) = ( ) ( ) + ( ) ( )

where kr( ) is the residual signal at time k, u and y are input and
output vectors, respectively. V ϕ( ) and W ϕ( ) are transfer function
matrices, and ϕ is the shift operator. Let the nominal system
model be k ky G uϕ( ) = ( ) ( ), then,

k kV u W G u V W G0ϕ ϕ ϕ ϕ ϕ ϕ( ) ( ) + ( ) ( ) ( ) = ⟹ ( ) = − ( ) ( )

has to be satisfied for all ku( ), in order to achieve a successful
residual generation. As a result, a general form of residual gen-
erators can be written as

k k kr W y W G u .ϕ ϕ ϕ( ) = ( ) ( ) − ( ) ( ) ( )

Thus, the key step for generating the residual signal is to identify
W ϕ( ) and G ϕ( ). Note that G ϕ( ) is a transfer function, which is gi-
ven. In this context, the parity relation-based residual generation
is conventionally referred as a model-based approach. Motivated
by the facts that a process model is often not available or only
achievable at high engineering costs, we address the residual
generation problem in the data-driven fashion.

For static processes, CCA technique is a powerful tool to analyze
the correlation between process input and output variables. Mo-
tivated by the parity relation-based residual generation, in this
paper, canonical correlation-based residual signal is defined as
follows:

k k kr L y M u , 1T T( ) = ( ) − ( ) ( )

where kr( ) is the residual signal at time k. L and M are unknown
constant matrices. An extension to dynamic processes by means of
DCCA-based method will be addressed in Section 4.

3. CCA-based FD method in the case of static processes

This section is devoted to the development of a CCA-based FD
scheme for static processes. We assume that the processes under
consideration are described by

k k ky u v , 2y uΨ Ψ( ) = ( ) + ( ) ( )

where y
m mΨ ∈ × and u

m lΨ ∈ × are constant but unknown ma-
trices, u l∈ is the input vector and y m∈ is the output vector,
v m∈ is a normally distributed vector with zero mean and un-
known constant covariance.

Let uobs
l∈ and yobs

m∈ be the measured process input and
output vectors, respectively. Assume that

u y, , , ,obs u u obs y yμ μΣ Σ∼ ( ) ∼ ( )

where uμ , uΣ , yμ and yΣ are unknown but constant. Denote the

Table 1
Tabular comparison between CCA-, PCA- and PLS-based monitoring methods.

Method Assumption on data Variables Detection purpose

PCA-based Multivariate normal distribution Process measurements (sensors) Changes in sensor and process
PLS-based Same as PCA, clear input–output relationship Both input and output, output is on-line unmeasurable Changes related with quality variable
CCA-based Same as PCA, clear input–output relationship Both input and output, both are on-line measurable Changes in input, output and process
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