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a b s t r a c t

This paper gives new results on iterative learning control (ILC) design and experimental verification using
the stability theory of linear repetitive processes. Using this theory a control law can be designed in one
step to force error convergence and produce acceptable transient dynamics. Previous research developed
algorithms for the design of a static control law with supporting experimental verification. Should a
static law not give the required levels of performance one option is to allow the control law to have
internal dynamics. This paper develops a procedure for the design of such a control law with supporting
experimental verification on a gantry robot, including a comparative performance against a static law
applied to the same robot. The resulting ILC design is an efficient combination of linear matrix in-
equalities and optimization algorithms.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An often encountered industrial task involves a system, e.g., a
robot, executing the same finite duration task over and over again.
Once each execution has been completed resetting to the starting
location occurs and the next execution can begin, either im-
mediately after the resetting is complete or after a finite time
period has elapsed from the end of the resetting operation. A
particular example is a gantry robot making repeated executions
of a pick and place operation where the steps are: (i) collect an
object, or payload, from a given location, (ii) transfer it over a finite
duration, (iii) place the payload on a moving conveyor, (iv) return
to the starting location and (v) repeat (i)–(iv) as many times as
required or for a finite number and then stop for maintenance.
Each execution is commonly termed a trial in the literature and
the time taken for a single trial is known as the trial length. Once
each trial is complete, all information generated over the trial
length is available for use in computing the control law for the
next trial. For example, at sample instant t information from
t , 0λ λ+ > , can be used. Such information is non-causal in the
standard sense but not for the dynamics considered provided it
has been generated on a previous trial.

The paper (Arimoto, Kawamura, & Miyazaki, 1984) introduced
iterative learning control (ILC) as a method for the control of

systems where the distinguishing feature is the use of information
from previous trials to update the control signal applied on the
next one. In particular, once the system has completed each trial,
the complete information generated is available for use in com-
puting the control signal to be applied on the next trial with the
aim of sequentially improving performance from trial-to-trial.

Industrial robotics is the most natural application area for ILC
but many others have also arisen in the engineering domain. The
survey papers (Ahn, Chen, & Moore, 2007; Bristow, Tharayil, &
Alleyne, 2006) are possible starting points for the literature. Also
ILC has been applied outside engineering, most notably in robotic-
assisted stroke rehabilitation where ILC, with supporting clinical
trials, has been used to adjust the level of electrical stimulation
applied to the relevant muscles of a stroke patient undergoing
robotic-assisted upper limb rehabilitation for everyday tasks, such
as reaching out to a cup over a table top or reaching out and then
upwards (Freeman, Rogers, Hughes, Burridge, & Meadmore, 2012).

Let yref(p) be a vector valued reference representing desired
output behavior. In the case of discrete dynamics, use the notation
y p p k, 0 1, 0k α( ) ≤ ≤ − ≥ , where y is a vector or scalar valued
variable, α < ∞ denotes the number of samples over the trial
duration and the nonnegative integer k the trial number. Then the
error on trial k is

e p y p y p p, 0 1 1k ref k α( ) = ( ) − ( ) ≤ ≤ − ( )

Moreover, the construction of a sequence of input functions that
improves performance from one trial to the next is equivalent to
the following convergence conditions on the input and error:
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where ∥·∥ is a signal norm in a suitably chosen function space with
a norm-based topology and u∞ is termed the learned control.
These conditions ensure trial-to-trial performance and if, as in this
paper, the dynamics along the trial are discrete, a commonly used
setting for design is based on a form of lifting that enables the
dynamic plant model in  to be treated, for single-input single-
output (SISO) systems with a natural extension to the multiple-
input multiple-output (MIMO) systems, as a static system in α.
Once the ILC law is applied, the propagation of the error dynamics
from trial-to-trial is described by a linear difference equation in k
and this is the starting point for analysis and design.

Given the finite trial length, trial-to-trial (in k) error con-
vergence can occur even if the system is unstable since such a
system can only produce a bounded output over a finite time
duration. Considering linear dynamics, the only option in lifting
based ILC design is to first introduce a stabilizing feedback control
law and then complete the ILC design for the controlled system. An
alternative that allows simultaneous consideration of trial-to-trial
error convergence and transient response along the trials is to
formulate the design problem in the 2D systems setting, where k is
one direction of information propagation and p the other. The use
of 2D discrete linear systems theory in ILC design started in Kurek
and Zaremba (1993) where the Roesser state-space model was
used. Repetitive processes are a particular class of 2D systems
where information propagation in the temporal domain occurs
over a finite duration known as the pass length, where this is an
inherent property of the dynamics and not an assumption.

The finite pass length makes repetitive processes a more nat-
ural match for ILC design and this setting has led to control laws
that have been experimentally tested (Hladowski et al., 2010,
2012; Paszke, Rogers, Gałkowski, & Cai, 2013). These results used
static combinations of state or output feedback and pass profile
feed forward information with Linear Matrix Inequalities (LMIs)
used to calculate the required control law parameters. Another
option, frequently used in process control applications, exploits
the batch process setting, e.g., Liu and Wang (2012) where an
approach to robust ILC design was developed for batch processes
with time-varying uncertainties and load disturbances. This is si-
milar to the repetitive processes setting but only designs in this
latter setting have been experimentally validated.

Due to possible LMI conservativeness, a design may fail for a
given example. One approach to remove or lessen the effects of
this problem is to include further noncausal finite-time interval
data (Cichy, Galkowski, & Rogers, 2014) in the ILC law and/or use
parameter dependent Lyapunov functions (Cichy, Galkowski, &
Rogers, 2015). Another approach in such cases is to use a dynamic
controller, which is the subject of this paper where the results are
on the structure, design and experimental verification of such a
control law in the repetitive process setting for discrete dynamics.

Throughout this paper, the null and identity matrices of com-
patible dimensions are denoted by 0 and I respectively. Also, a
symmetric positive definite (respectively negative definite) matrix,
say M, is denoted by M 0≻ (respectively M 0≺ ). The symbol n re-
presents transposed entries in a symmetric matrix and the next
section gives an overview of the relevant results from the mod-
eling and stability analysis of linear repetitive processes.

2. Background

The analysis and control law design in this paper is based on
the stability theory for linear repetitive processes whose dynamics
and unique control problem are best introduced in terms of a

physical example. In coal mining the coal is extracted by the cut-
ting machine as it makes repeated traverses along the coal face,
termed passes. Once each pass is complete, the machine is re-
turned to the starting location and the next pass can begin, either
immediately or after a period of time has elapsed. During the
production of each pass, where the output is termed the pass
profile, the machine rests on a semi-flexible structure that lies
over the previous pass profile. Hence the previous pass profile acts
as a forcing function on, and hence contributes to, the dynamics of
the next pass profile. Variables in a repetitive process are functions
of two indeterminates and the notation used is of the form
y p p k, 0 1, 0k α( ) ≤ ≤ − ≥ , where y is the scalar or vector valued
variable, α < ∞ is the pass length and the subscript k denotes the
pass number.

Let yk{ } denote the sequence of pass profiles generated by an
example. Then the control problem is that this sequence can
contain oscillations that increase in amplitude from pass-to-pass,
i.e., with k. The original references are in Rogers, Galkowski, and
Owens (2007) for the coal mining application and establish that
the oscillations in the pass profile sequence are due, in the main, to
the weight of the cutting machine. Without control action the only
option is to halt productive work to enable their manual removal
and in this application the interaction between successive pass
profiles is due to the physics of the application area. In other cases,
including ILC, this interaction arises from the control action ap-
plied. Another example in this latter class is OL-Nash games in gas
dynamics problems (Azevedo-Perdicoulis & Jank, 2012).

A stability theory for linear constant pass length repetitive
processes has been developed (Rogers et al., 2007). This is based
on an abstract model in a Banach space setting that includes are
very wide range of such processes as special cases. Given the
control problem, this theory demands that a bounded initial pass
profile produces a bounded sequence of pass profiles, with
boundedness defined in terms of the norm on the underlying
function space. Moreover, this property can be enforced over the
finite and fixed pass length, termed asymptotic stability, or for all
possible values of the finite pass length, termed stability along the
pass. This last property can be analyzed by considering α → ∞ and
this is the form of repetitive process stability theory required in
this paper.

The analysis and ILC design in this paper is based on discrete
linear repetitive processes whose state-space model over

p k0 1, 0α≤ ≤ − ≥ , is

x p x p u p y p y p

x p u p y p
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where on pass k, x pk
n( ) ∈ is the state vector, y pk

m( ) ∈ is the
pass profile vector and u pk

r( ) ∈ is the control input vector. The
boundary conditions are the state initial vector on each pass and
the initial pass profile. In this work the boundary conditions can be
taken as zero without loss of generality.

As discussed above, stability of these processes is defined in
terms of the contribution of the previous pass profile to the next
pass. For processes described by (3) the pass-to-pass coupling is
described by the convolution operator, denoted by Lα , for a dis-
crete standard linear system with state-space model matrices
A B C D, , ,0 0{ }. Hence the contribution from pass k to pass kþ1 can
be written as y L y k, 0k k1 = ≥α+ . Also let y Ek ∈ α, where Eα is a
suitably chosen Banach space with norm denoted by∥·∥ and let the
same symbol denote the induced norm on the bounded linear
operator Lα.

Asymptotic stability for linear repetitive processes is equivalent
to the existence of finite real scalars M 0>α and 0, 1λ ∈ ( )α such
that L Mk kλ∥ ∥ ≤α α α , k 0≥ . For examples described by (3), asymptotic
stability requires that D 10ρ( ) < and if this condition holds the
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