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a b s t r a c t

This paper addresses the topic of robot identification. The usual identification method makes use of the
inverse dynamic model (IDM) and the least squares (LS) technique while robot is tracking exciting tra-
jectories. Assuming an appropriate bandpass filtering, good results can be obtained. However, the users
are in doubt whether the columns of the observation matrix (the regressors) are uncorrelated (exo-
genous) or correlated (endogenous) with the error terms. The exogeneity condition is rarely verified in a
formal way whereas it is a fundamental condition to obtain unbiased LS estimates. In Econometrics, the
Durbin-Wu-Hausman test (DWH-test) is a formal statistic for investigating whether the regressors are
exogenous or endogenous. However, the DWH-test cannot be straightforwardly used for robot identifi-
cation because it is assumed that the set of instruments is valid. In this paper, a Revised DWH-test
suitable for robot identification is proposed. The revised DWH-test validates/invalidates the instruments
chosen by the user and validates the exogeneity assumption through the calculation of the QR factor-
ization of the augmented observation matrix combined with a F-test if required. The experimental results
obtained with a 6 degrees-of-freedom (DOF) industrial robot validate the proposed statistic.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The usual robot identification method makes use of the con-
tinuous-time inverse dynamic model and the least squares (LS)
technique while the robot is tracking some exciting trajectories.
This explains why robot identification belongs to the closed-loop
identification of continuous-time models from sampled data. This
method, called as Inverse Dynamic Identification Model with Least
Squares method (IDIM-LS), has been successfully applied to
identify the inertial parameters of several prototypes and in-
dustrial robots, (Olsen, Swevers, & Verdonck, 2002; Swevers,
Verdonck, & De Schutter, 2007; Hollerbach, Khalil, & Gautier,
2008; Calanca, Capisani, Ferrara, & Magnani, 2011; Gautier, Janot, &
Vandanjon, 2013; Janot, Vandanjon, Gautier, 2014a) among others.
Good results are obtained provided that an appropriate bandpass
filtering of the joint positions is used to calculate the joint velo-
cities and accelerations. However, because robots are identified in
closed loop, the users can doubt whether the columns of the ob-
servation matrix (the regressors) are correlated with the error
terms (endogenous) or not (exogenous) even with a data filtering,

see e.g. Söderström and Stoica (1989), Garnier and Wang (2008),
Young (2011), Gilson, Garnier, Young, and Van den Hof (2011).

Other identification methods were tried: the Total Least-
Squares (Xi, 1995), the Set Membership Uncertainty (Ramdani &
Poignet, 2005), an algorithm based on Linear Matrix Inequality
(LMI) tools (Indri, Calafiore, Legnani, Jatta, & Visioli, 2002), a
maximum likelihood (ML) approach (Olsen et al., 2002), the
Closed-Loop Output-Error method (Landau, 2001; Östring, Gun-
narsson, & Norrlöf, 2003; Gautier et al., 2013), an algorithm based
on neural network (Soewandito, Oetomo, Ang, 2011), a Bayesian
approach (Ting, Mistry, Peters, Schaal, & Nakanishi, 2006), the
extended Kalman filter (Gautier & Poignet, 2001) and (Kostic, de
Jager, Steinbuch, & Hensen, 2004), a method which estimates the
nonlinear effects in the frequency domain (Wernholt & Gunnars-
son, 2008) and the Unscented Kalman Filter (Dellon & Matsuoka,
2009). Although all these techniques are of interest, they do not
really improve the IDIM-LS method combined with an appropriate
data filtering. Furthermore, the robustness against data filtering
was not studied, some of these approaches were not validated on a
6 degrees-of-freedom (DOF) industrial robot and the condition
that the regressors are not correlated with the error terms is not
addressed whereas it is a critical condition to obtain unbiased
estimates (Hausman, 1978; Davidson & MacKinnon, 1993; Wool-
dridge, 2009). This condition is called as the exogeneity condition.

The Instrumental Variable method (IV) provides unbiased es-
timates while the regressors are endogenous (Söderström & Stoica,
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1989; Garnier & Wang, 2008; Young, 2011). A generic IV method
for industrial robots identification is proposed in Janot et al.
(2014a), Janot, Vandanjon, and Gautier (2014b). This approach
called as the IDIM-IV method was successfully validated on a
2 DOF prototype robot and on a 6 DOF industrial robot. However,
the validity of the instruments was not addressed and using the IV
method while the regressors are exogenous provides inefficient
unbiased estimates i.e. their variances are not minimal (Hausman,
1978; Davidson & MacKinnon, 1993; Wooldridge, 2009).

In Econometrics, the Durbin-Wu-Hausman test (DWH-test) is a
formal statistic for investigating whether the regressors are exo-
genous or endogenous (Hausman, 1978). The DWH-test makes use
of the Two Stages Least Squares (2SLS) technique and an aug-
mented LS regression. However, the DWH-test cannot be
straightforwardly used for robot identification because it is im-
plicitly assumed that the instrumental matrix is well correlated
with the observation matrix and uncorrelated with the errors.
Furthermore, the econometric models are empirical whereas the
models used in mechanical engineering are based on physical laws
(e.g. the Newton's laws).

In this paper, it is proposed to bridge the gap between Econo-
metrics theory and Control engineering practice by presenting a
Revised DWH-test suitable for identification of robots. This re-
visited statistic validates/invalidates the model chosen by the user
and the exogeneity condition is validated by the QR factorization
of the augmented observation matrix combined with the F-test.

A condensed version of this work has been presented in Janot,
Vandanjon, and Gautier (2013). This paper contains detailed proofs
to enlighten the theoretical understanding of the Revised DWH-
test, heteroskedasticity is taken into account and additional ex-
perimental results are provided.

The rest of the paper is organized as follows. Section 2 recalls
the IDIM-LS method and reviews the theory of Econometrics.
Section 3 introduces the Revised DWH-test while Section 4 is
devoted to experimental results. Finally, Section 5 concludes the
paper.

2. Theoretical background: modeling, identification of robots
and introduction of the DWH-test

2.1. Modeling and identification of robots

The inverse dynamic model (IDM) of robot with n moving links
calculates the ( × )n 1 joint torques vector τidm as a function of
generalized coordinates and their derivatives (Khalil & Dombre,
2002),

( )τ = ( ) ¨ + ̇ ( )M q q N q q, , 1idm

where q, q̇ and q̈ are respectively the ( × )n 1 vectors of generalized
joint positions, velocities and accelerations; ( )M q is the ( × )n n
inertia matrix; ( ̇)N q q, is the ( × )n 1 vector of centrifugal, coriolis,
gravitational and friction torques.

The modified Denavit and Hartenberg (MDH) notation allows
to obtain an IDM which is linear in relation to a set of base para-
meters β

( )τ β= ̇ ¨ ( )IDM q q q, , , 2idm

where ( ̇ ¨ )IDM q q q, , is the ( × )n b matrix of basis functions of
bodies dynamics and β is the ( × )b 1 vector of base parameters.

The base parameters are the minimum number of dynamic
parameters from which the IDM can be calculated. They are ob-
tained from the standard dynamic parameters by regrouping some
of them with linear relations (Mayeda, Yoshida, & Osukaet, 1990).
The standard parameters of a link j are XXj, XYj, XZj, YYj, YZj and ZZj

the six components of the inertia matrix of link j at the origin of
frame j; MXj, MYj and MZj the components of the first moment of
link j; Mj the mass of link j; Iaj a total inertia moment for rotor
and gears of actuator j; Fvj and Fcj the viscous and Coulomb
friction parameters of joint j.

The direct dynamic model (DDM) of robots is given by

( )τ( ) ¨ = − ̇ ( )M q q N q q, . 3idm

Proportional–Derivative (PD) and Proportional–Integral–Deri-
vative (PID) controls are often implemented to identify the dy-
namic parameters. The joint j signal control τv j is given by

( )= ( ) − ( )τv C s q q , 4j r mesj j j

where ( )C sj is the transfer function of the joint j controller, qrj
is

the joint j position reference, qmesj
is the measurement of qj the

joint j position, s is the time derivative operator i.e. =s d dt/ .
The data available from robots controllers are qmes the ( × )n 1

vector of measurements of q and τv , the ( × )n 1 vector of control
signals. Each joint j torque is connected with each joint j control
signal ντj by

τ ν= ( )τ τg , 5j j j

where τg
j
is the joint j drive gain a priori given by manufacturers.

In (2), q is estimated with q̂ obtained by filtering qmes through a
lowpass Butterworth filter in both the forward and reverse di-

rections. ( ̇̂ ¨̂ )q q, are calculated with a central differentiation algo-
rithm of q̂. τ being perturbed by high-frequency disturbances, a
parallel decimation procedure is used to eliminate torque ripples
(see Gautier et al., 2013 for the details).

Because of uncertainties, the ( × )n 1 vector of the actual joint
torques τ differs from τidm by an error e. The model (2) is sampled
while the robot is tracking trajectories (see Gautier et al., 2013 for
the details). After data acquisition and data filtering, the following
overdetermined linear system is obtained

( )τ β ε( ) = ^ ̇̂ ¨̂ + ( )y X q q q, , , 6

where τ( )y is the ( × )r 1 measurements vector built from the actual

torques τ; (^ ̇̂ ¨̂ )X q q q, , is the ( × )r b observation matrix built from the

sampling of (^ ̇̂ ¨̂ )IDM q q q, , ; ε is the ( × )r 1 sampled vector of e;
= ⋅r n ne is the number of rows in (6), ne being the number of rows

in a subsystem j.
Relation (6) is the Inverse Dynamic Identification Model (IDIM).

The columns of (^ ̇̂ ¨̂ )X q q q, , are the regressors. ε is assumed to have
zero mean, to be serially uncorrelated with a covariance matrix Ω
partitioned so that σ σ σΩ = ( ⋯ ⋯ )diag I I In j n n n1

2 2 2
e e e , Ine being the

( × )n ne e identity matrix. σ j
2 is estimated through the Ordinary

Least Squares (OLS) solution of a subsystem j (see Gautier et al.,
2013 for the details). The IDIM-LS estimates and their covariance
matrix are given by

( ) ( )β Ω Ω Σ Ω^ = ^ = ( )
− − − − −

X X X y X X, . 7LS
T T

LS
T1 1 1 1 1

The IDIM-LS estimates are unbiased if

( )ε = ( )E X 0, 8
T

where ( )E . is the expectation operator (Davidson & MacKinnon,
1993).

Because robots are identified in closed loop, the users can

doubt whether (^ ̇̂ ¨̂ )X q q q, , is correlated with ε or not. To overcome
the problem of a correlation between X and ε, the Two-Stage-
Least-Squares (2SLS) technique is an appropriate method.
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