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a b s t r a c t

In this paper, a methodology for the synthesis of repetitive controllers to ensure periodic reference
tracking and harmonic disturbance rejection is cast in a robust control framework. Specifically, the
Lyapunov–Krasovskii theory is applied to derive LMI-based conditions for designing a state feedback
control law with guaranteed stability and performance properties for system parameter variations.
Practical experiments in commercial uninterruptible power supplies – UPS are considered to illustrate
and discuss some practical implementation aspects of the proposed method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reference tracking and disturbance rejection are two require-
ments that control engineers usually have to deal in many prac-
tical applications such as DC motors (Ramos, Cortes-Romero, &
Coral-Enriquez, 2015; Wu, Xu, Cao, & She, 2014), anti-vibration
systems (Yao, Tsai, & Yamamoto, 2013) and power inverters (del
Puerto-Flores et al., 2014; Lopez Arevalo, Zanchetta, Wheeler,
Trentin, & Empringham, 2010; Rohouma, Zanchetta, Wheeler, &
Empringham, 2015), to cite a few. In particular, these references
address the tracking and disturbance rejection problem of periodic
signals, where traditional controllers such as Proportional-In-
tegral-Derivative (PID) and Lead-Lag compensators cannot ro-
bustly guarantee tracking/rejection performance (Chen, 1970).
Traditionally, in control system theory, the latter requirements are
satisfied considering controllers based on the Internal Model
Principle (IMP) (Chen, 1970), which basically establishes that the
controller should contain the nonvanishing modes of reference
and disturbance inputs, assuming closed loop stability.

The IMP is the basic principle considered by repetitive and
resonant controllers to deal with periodic references and dis-
turbances. Precisely, the perfect steady-state reference tracking or

disturbance rejection of a sinusoidal signal with frequency ω0 will
be guaranteed only if the controller contain a pair of poles at ω± 0

in the imaginary axis. The extension of the IMP to cope with
periodic signals of any nature can be easily obtained by re-
presenting them in terms of a Fourier series expansion, i.e. to re-
present it as a weighted sum of sinusoidal terms whose fre-
quencies are integer multiples (i.e. harmonics) of the fundamental
frequency. Hence, the controller will contain several pairs of
complex poles in the imaginary axis located at the fundamental
frequency and its harmonics. Since the controller frequency re-
sponse presents peaks with infinite gain at the resonance fre-
quencies, these controllers are usually referred as resonant con-
trollers (Angulo, Ruiz-Caballero, Lago, Heldwein, & Mussa, 2013).
One of the main drawbacks of these controllers lies in its tuning
complexity. Depending on the number of harmonic frequencies
effectively considered, a large number of parameters have to be
designed (Pereira, Flores, Bonan, Coutinho, & Gomes da Silva,
2014). An alternative and less complex control structure im-
plementing the IMP for dealing with general periodic signals is the
repetitive controller. The repetitive control structure is usually
implemented by means of a delay element (related to its funda-
mental frequency) in a positive feedback loop leading to infinite
resonant peaks in the controller frequency response (Chen & To-
mizuka, 2014). Despite its effectiveness in solving the tracking and
disturbance rejection problems, the delay element introduces
some complexity on the control design of systems subject to
parameter uncertainties.

A typical example of systems subject to periodic reference/
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disturbance signals and parameter uncertainties are unin-
terruptible power supplies (UPS) which are usually employed to
protect critical loads against sudden disturbances or line failures.
Due to the critical nature of loads, UPS have to satisfy severe
quality requirements such as fast dynamic response, noise at-
tenuation and low total harmonic distortion (THD) (IEC62040,
2004). The disturbance rejection problem is particularly interest-
ing when UPS are feeding nonlinear loads with high harmonic
content as, for instance, line rectifiers with large capacitive filters.
Traditionally, PID controllers are the most common control tech-
nique employed in commercial UPS (Jaafar, Alawieh, Ortega,
Godoy, & Lefranc, 2013; Willmann, Coutinho, Pereira, & Libano,
2007). In particular, a multi-loop approach is applied consisting of
an inner PD loop to track a sinusoidal reference (fast dynamics)
and an outer PI loop to adjust the root mean square (RMS) value of
the output voltage. However, this classical PI–PD control structure
generally yields high THD values when feeding nonlinear loads
and the closed loop transient performance is affected by the RMS
calculation which requires a full reference cycle to be performed
(Willmann et al., 2007).

Repetitive controllers have been widely applied to control UPS
systems because of its simple structure and small number of
tuning parameters. For instance, a standard repetitive control
structure is added to a negative feedback loop in Escobar, Valdez,
Leyva-Ramos, and Mattavelli (2007) for compensating only odd
harmonics of the fundamental frequency. A new structure com-
bining repetitive and resonant controllers is proposed in Salton,
Flores, Pereira, and Coutinho (2013) in order to reduce THD and
improve the transient response of UPS systems. Digital im-
plementations of repetitive controllers in the UPS context were
developed in Buso and Mattavelli (2006), Rech, Pinheiro, Grund-
ling, Hey, and Pinheiro (2003), and Lu, Zhou, Wang, and Cheng
(2014). In Rech et al. (2003), a comparison between different al-
gorithms to implement the repetitive controller is presented,
while a novel repetitive structure optimizing data memory is
presented in Lu et al. (2014).

This paper proposes a linear matrix inequality (LMI) based
strategy to the synthesis of repetitive controllers for systems
subject to periodic references/disturbances and parameter varia-
tions. More precisely, the preliminary results reported in Bonan,
Flores, Coutinho, and Pereira (2011) are extended in several ways
given special attention to application aspects. In particular, a de-
tailed controller analysis is presented to demonstrate that the
addition of a first order filter to the basic repetitive control
structure impacts on the closed-loop transient and steady state
responses. Then, a systematic procedure is proposed to determine
the controller parameters with guaranteed robustness properties
as well as transient performance to parameter variations. The
controller parameters are obtained by means of a convex optimi-
zation problem which is numerically solved through available
standard software packages such as Sturm (1999) and Toh, Todd,
and Tutuncu (1999). Hence, simulation and experimental results
are presented to illustrate the behavior of the proposed approach
when applied to a commercial 4.3 kVA PWM single phase half
bridge DC–AC inverter usually considered in the output stage of
UPS. To critically evaluate the closed loop performance, linear and
nonlinear loads are considered in the experimental setup accord-
ing to the IEC 62040-3 standard.

This paper is organized as follows. In Section 2, the uncertain
state-space model of the system under analysis is presented. Thus,
a detailed explanation regarding the repetitive controller including
the effects of the low-pass filter on the relative stability, steady-
state error and dynamic response of the closed loop system is
provided in Section 3. Based on Lyapunov–Krasovskii theory, LMI
conditions are derived in Section 4 to synthesize the controller
parameters such that robust closed-loop stability and performance

are guaranteed. In Section 5, simulation and experimental results
are presented to evaluate the behavior of the proposed solution,
and some concluding remarks are drawn in Section 6.

Notation:  is the set of real numbers,  is the set of complex
numbers, n denotes the n-dimensional Euclidean space,  ×n m is
the set of ×n m real matrices, ∥·∥ is the Euclidean vector norm, 0n

and ×0m n are the ×n n and ×m n matrices of zeros, In is the ×n n
identity matrix. For a real matrix S, ′S denotes its transpose, and

> ( < )S S0 0 means that S is symmetric and positive-definite
(negative-definite). Matrix and vector dimensions are omitted
whenever they can be inferred from the context. The time-deri-
vative of a function r(t) will be denoted by ̇ ( )r t and the argument
( )t is often omitted.

2. Preliminaries

Consider the following Single-Input Single-Output – SISO sys-
tem described in state space by

⎧
⎨⎪
⎩⎪

̇ ( ) = ( ( )) ( ) + ( ) + ( )
( ) = ( )
( ) = ( ) − ( ) ( )

t Y t t u t i t

y t t
e t r t y t

x A x B B
Cx

1

d d0

where ( ) ∈tx n is the state vector, ( ) ∈y t is the output signal to
be controlled, ( ) ∈r t is a periodic reference signal to be tracked
by y(t) and ( ) ∈i td is a periodic disturbance. Signals r(t) and id(t)
are assumed to have the same fundamental period (here denoted
by τ), however they can significantly differ with respect to har-
monic content. Matrices B B, d and C are supposed to be constant
with appropriate dimensions and ( ( ))Y tA 0 is a matrix function of
the uncertain parameter ( )Y t0 .

It is assumed that ( )Y t0 is bounded with known minimum and
maximum values, that is:

≤ ( ) ≤Y Y t Y .0 0 0

For convenience, the parameter ( )Y t0 is often cast in terms of its

nominal value Ỹ0 and deviation Ŷ0 as follows:

δ δ( ) = ˜ + ( ) ^ ( ) ∈ [ − ] ( )Y t Y t Y t, 1, 1 , 20 0 0

where

˜ = + ^ = −
Y

Y Y
Y

Y Y
2

and
2

.0
0 0

0
0 0

In view of (2), notice that the Linear Fractional Transformation
(LFT) approach can be applied to describe ( ( ))Y tA 0 in the following
form (Zhou & Doyle, 1998):

δ δ( ( )) = ( ˜ ) + ( ^ ) ( ) ( ) ∈ [ − ] ( )Y t Y Y t tA A H E, 1, 1 , 30 0 0

where ( ˜ )YA 0 , ( ^ )YH 0 and E are constant matrices representing the
uncertainty structure.

3. Repetitive controller

3.1. Basic concepts

The idea of repetitive control was initially proposed in Inoue,
Nakano, and Iwai (1981) as an alternative to traditional controllers
to ensure the reference tracking or disturbance rejection of peri-
odic signals. Its working principle is to store the tracking error
during a complete period and to feed the delayed error signal in
the nominal system (Yamamoto, 1993). Typically, this behavior is
obtained by the introduction of a delay element with value equal
to τ in a positive feedback loop. This results in a transfer function
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