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a b s t r a c t

This paper develops an iterative learning control law that exploits recent results in the area of predictive
repetitive control where a priori information about the characteristics of the reference signal is em-
bedded in the control law using the internal model principle. The control law is based on receding
horizon control and Laguerre functions can be used to parameterize the future control trajectory if re-
quired. Error convergence of the resulting controlled system is analyzed. To evaluate the performance of
the design, including comparative aspects, simulation results from a chemical process control problem
and supporting experimental results from application to a robot with two inputs and two outputs are
given.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many systems complete the same finite duration task over and
over again. The sequence is that the task is completed, the system
resets to the starting location, the next one is completed and so on.
In this paper each execution is termed a trial and the duration is
termed the trial length. Once each trial is complete, the system
resets to the original location and the next trial can begin, either
immediately after the resetting is complete or after a stoppage
time has elapsed.

Such systems arise in many industrial applications, where a
generic example is a gantry robot undertaking a pick and place
task and the sequence of operations is (i) collect the object from a
fixed location, (ii) transfer it over a finite duration, (iii) place it at a
static location or on a moving conveyor, (iv) return to the starting
location and (v) repeat the previous four steps for as many times
as required or until a halt is needed for maintenance or other
reasons. Similar operations exist in the field of chemical process
control such as the operation of batch chemical reactors, see, for
example, Lee, Bang, Yi, Son, and Yoon (1996, 2000, 2001), Chin,
Qin, Lee, and Cho (2004), and Liu, Gao, and Wang (2010), where
the output of the reactor is required to follow a given trajectory
over a finite time interval.

Once a trial is complete all information generated during its
production is available for use in computing the control signal to
be applied on the next trial. Iterative Learning Control (ILC), where

the first work is widely credited to Arimoto, Kawamura, and
Miyazaki (1984), uses information generated on the previous trial,
or a finite number thereof, in the computation of the input to be
applied on the next trial. The survey papers Bristow, Tharayil, and
Alleyne (2006) and Ahn, Chen, and Moore (2007) are a starting
point for the literature.

One extensively studied class of ILC laws is based on the
minimization of an objective function constructed from the addi-
tion of two sums of squares terms and the result summed over the
trials, such as Amann, Owens, and Rogers (1996) and Lee et al.
(2000). The first of these is formed from the current trial error,
that is, the difference between the supplied reference signal and
the current trial output, and the second from the difference be-
tween the control signals used on successive trials, or the current
trial signal alone. This class of algorithms is termed norm optimal,
and experimental verification of its performance has also been
reported (Barton & Alleyne, 2011; Ratcliffe, Lewin, Rogers, Hato-
nen, & Owens, 2006; Rogers et al., 2010).

This paper develops a predictive ILC design that uses a similar
cost function to the one in norm optimal ILC, but embeds the re-
ference signal/disturbance model in the controller and employs the
receding horizon control principle. The idea of embedding the re-
ference signal information in the controller has been successfully
used in model predictive control, for example, Wang (2009) and in
other ILC related research (Moore & El-Sharif, 2009). The design
allows for the practically motivated case where the reference signal
has dominant frequencies and it is decided to only include these in
control design as opposed to all frequencies. Also it is assumed that
the system dynamics can be adequately modeled, at least for initial
control related studies, as linear and time-invariant.
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The duration of each trial in ILC is finite and the trial-to-trial
error sequence can converge as the number of trials increases even
if the system has unstable along the trial dynamics, since over a
finite duration only bounded dynamics can be produced. The
control design in this paper stabilizes the dynamics on each trial
and allows for the rate of convergence to be controlled.

Simulation results from a chemical process control example
and supporting experimental data from application of the new
results to a two-input two-output robot complete the paper. The
next section gives the required background.

2. Background

The design in this paper is based on a frequency domain de-
composition of the supplied reference signal or vector in the sin-
gle-input single-output (SISO) and multiple-input multiple-output
(MIMO) cases. Once these are selected they are embedded in the
process state-space model in accordance with the internal model
principle as described next.

Consider the SISO case for simplicity with an obvious gen-
eralization to the MIMO case, and suppose that the frequency
components of the reference signal to be included in the design
have been selected, for details see Wang, Chai, Rogers, and Free-
man (2012, 2013). This results in the annihilator polynomial
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Here 0 and ωi , = …i l1, 2, , , for some chosen positive integer l,
denote the frequencies to be included.

The control law is to be designed to track the reference signal
and hence, by the internal model principle (Francis & Wonham,
1975), the corresponding D(z), that is, a particular case of (1) must
be included in the denominator of the z transfer-function de-
scription of the controller dynamics. In this paper, the method
used is to add a vector term ( μ ( )p in the state-space model (2)
below) to the state dynamics in the plant state-space model as
described next, but alternatives exist.

Remark 1. To put this particular design in context, the basic
premise is that in many cases the reference signal will have a finite
number of dominant frequencies and it suffices to enforce tracking
of these frequencies instead of the complete frequency spectrum.
This can be viewed as selecting a number of basis functions to
approximate the reference signal and there has been other work
on such ideas for ILC, see, for example, Sugie and Sakai (2007), van
de Wijdeven and Bosgra (2010), and Hamamoto and Sugie (2001).
In van de Wijdeven and Bosgra (2010) the problem considered is
that the learned command signal is optimal for the specific fixed
task only and, in general, extrapolation of the learned command
signal to other tasks leads to a significant performance dete-
rioration. Basis functions are used to enhance the extrapolation to
a class of reference signals. The approach in Sugie and Sakai (2007)
and Hamamoto and Sugie (2001) is to restrict the input/output
space to an appropriate finite dimensional space spanned by basis
functions derived from the reference signal. These are valid al-
ternatives and the question of which one to chose for a given
application is discussed again in the last section of this paper.

Suppose that the plant to be controlled has mu inputs and my

outputs and consider the following state-space model at sampling
instant p,
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where xm(p) is an ×n 11 state vector, u(p) is an ×m 1u input vector
and y(p) is an ×m 1y output vector of the plant. Also each entry in

the ×n 11 vector μ ( )p is the inverse z-transform of
( )D z
1 and let q�1

denote the backward shift operator and ( )−D q 1 the shift operator
interpretation of D(z). Then applying ( )−D q 1 to xm(p) and u(p) gives
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Also μ( ) ( ) =−D q p 01 (since D(z) contains all frequencies in μ ( )p ) and
from (2)
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Introducing the state vector
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gives the following augmented state-space model for design
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and 0 and I denote the zero and identity matrices, respectively, of
compatible dimensions γ γ( × )m my y . In addition
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The poles of (4) are the union of those of the system model and
those arising from the structure of μ ( )p .

3. Prediction-based ILC design

In the ILC setting ≥k 0 is used to denote the trial number and
the notation for variables is of the form yk(p) where y is the scalar
or vector valued variable under consideration and < ∞p is the
number of samples along the trial. The plant dynamics are again
described by a state-space model triple. Let r(p) be the supplied
reference vector that does not vary from trial-to-trial. Then

( ) = ( ) − ( ) ( )e p y p r p 5k k

is the error on trial k and the basic ILC problem is to force the
sequence { }ek to converge in k.

Suppose that the frequency domain decomposition given in the
previous section is applied to r(p) and D(z) of (1), where the latter
polynomial is constructed from the frequencies to be included.
Then the ILC problem can be formulated by following identical
steps to those used to obtain (4), resulting in a state-space model
for design of the form
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