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A B S T R A C T

In high speed roller bearings, the drag force due to the oil-air mixture present in the bearing cavity – that is acting
against the roller movement – is usually computed with a two-dimensional model of flow around a cylinder of
infinite length. However rollers are of finite length, and the flow is perturbed by the two free ends, the sur-
rounding rings, the cage and other rolling elements. In this article, the Computational Fluid Dynamics (CFD)
method is employed to analyze first the flow around one finite-length circular cylinder with two free ends in an
open space. Then the model is changed to one finite cylinder and then several in-line circular cylinders sand-
wiched by two flat walls, which represents a simplified approach. The results indicate that both the flow pattern
around the cylinder and its drag coefficient are modified in comparison with the two-dimensional model. Finally a
relationship between the drag coefficient and the Reynolds number suitable for circular cylinder in roller bearings
is proposed.

1. Introduction

In a rotating machinery system like turbine engine, roller bearings
play an important role in supporting the rotating shaft or rotor, and need
lubrication to insure their function. In the bearing, only a small quantity
of oil is needed to form the elastohydrodynamic lubricant (EHL) film in
the contact zone, the EHL film thickness being less than a few tenth of
micrometer. Most of lubricant remains in suspension in air, forming an
oil/air mixture like a fog, which contributes to cool down the bearing
components [1] – with an effect somewhat proportional to the oil flow –

but also acts as a heat source for high speed applications with an increase
of dissipation roughly proportional to the square of the rotational speed.
This phenomenon leads to excessive parasitic hydraulic losses when
rolling elements translate and rotate into the fluid environment, which
may constitute a relatively large portion of the bearing's total power loss,
named drag or windage loss. For high speed applications, i.e. for rota-
tional speed up to 3� 106 Ndm, the contribution of drag/windage loss to
the total one may reach up to 50% [2,3]. This can be easily observed with
a test bench by measuring the input shaft torque when shutting off the oil
feed. A simplemodel has been introduced by Harris [4] for estimating the
drag force acting on the roller, based on the solution for one isolated body
in translation into a one phase fluid:

Fr ¼ 1
2
CdρV2A (1)

where Fr is the drag force (N), ρ the mass density of the fluid (kg=m3), V
the velocity at which the body is traveling (m=s), and A the frontal area of
the body to the flow direction (m2). Here the drag coefficient Cd plays a
dominant part in the drag force calculation. It is plotted in Fig. 1 as a
function of the Reynolds number, both for a smooth cylinder and a
smooth sphere [5].

This approach is however too simplified since interactions with the
roller surrounding are neglected. This has been the purpose of recent
investigations for ball bearings. Marchesse et al. [6] and Pouly et al. [7]
experimentally proved that the drag coefficient for spheres in ball bear-
ings is nearly divided by a factor 5 in comparison with that for an isolated
sphere. In their research the effect of rings is ignored, which is a strong
simplification as pointed out by Yan et al. [8]. Very recently the latest
authors correlated experimental observations in high-speed ball bearings
and 3D CFD computations [9], emphasizing that the flow performance
strongly depends also on the lubricant supply method in addition to the
internal bearing geometry. Meantime high-speed roller bearings have
received less attention. The relationship between the drag coefficient and
the Reynolds number plotted in Fig. 1 for cylinder is obtained for an
infinitely long roller, i.e. without free ends. While the circular cylinder in

* Corresponding author. School of Power and Energy, Northwestern Polytechnical University, Xi'an, China.
E-mail address: wenjun.gao@insa-lyon.fr (W. Gao).

Contents lists available at ScienceDirect

Tribology International

journal homepage: www.elsevier.com/locate/triboint

https://doi.org/10.1016/j.triboint.2018.02.044
Received 15 December 2017; Received in revised form 19 February 2018; Accepted 26 February 2018

0301-679X/© 2018 Elsevier Ltd. All rights reserved.

Tribology International 123 (2018) 43–49

mailto:wenjun.gao@insa-lyon.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2018.02.044&domain=pdf
www.sciencedirect.com/science/journal/0301679X
http://www.elsevier.com/locate/triboint
https://doi.org/10.1016/j.triboint.2018.02.044
https://doi.org/10.1016/j.triboint.2018.02.044
https://doi.org/10.1016/j.triboint.2018.02.044


roller bearings is of finite-length with two free-side ends immersed into a
viscous fluid. The shear flow that separates from free ends may interact
violently with that from the cylindrical surface and results in a
three-dimensional flow phenomenon [10], as shown in Fig. 2. Not only
that, but the cylinder is sandwiched by two rings with micron-size
clearance so that the oil-air mixture could only bypass the free ends
rather than the cylindrical surface. Moreover, with relative short gap
between two adjacent rollers, flow around several in-line cylinders could
interact with each other, like that in ball bearings [11,12]. Consequently,
the drag coefficient for cylindrical elements in roller bearings has to be
investigated with a three-dimensional model and should take the sur-
rounding rings and rollers into account (see Fig. 3).

In this article, a CFD model is proposed to study the flow pattern
around a circular cylinder with two free ends without and with nearby
walls as in roller bearings in order to clarify the effect of the geometry on
the drag force acting on its surface. First one isolated circular cylinder in
an open space is simulated and compared with experimental data to
verify the model. After that, the model is employed to investigate one
isolated cylinder and further several in-line cylinders sandwiched by two
flat walls. Vortex flow around the finite-length cylinder in different
configurations is revealed and a new relationship of drag coefficient
varying with the Reynolds number suitable for cylindrical elements in
roller bearings is obtained. Note that the same methodology could be
easily applied to more complex geometrical and kinematical configura-
tions such as high-speed gearboxes [14,15], for example.

2. Numerical approach

2.1. Numerical computation domain

In roller bearings, a series of cylindrical roller elements transfer
through the oil-air mixture periodically, together with the cage and
surrounded by the inner and outer rings. To clarify flow characteristics
around the roller, the problem is simplified to a series of finite-length
circular cylinders transferring into a one phase flow. The effect of the
cage is ignored because it has been demonstrated experimentally that
their effect is of second order on the drag coefficient value [16]. Three
different configurations are established and studied for a cylinder of
finite length: 1) Configuration#1 considers one isolated circular cylinder
in an open space. Its center is located 5 times the cylinder diameter (5D)
downstream of the inlet and 15D upstream of the outlet. The other four
sides are 5D far from the center of the cylinder. 2) Configuration #2
ignores the ring's curvature and considers one isolated cylinder sand-
wiched by two flat walls, with micron-size clearance between the cy-
lindrical surface and the flat walls. 3) Configuration #3 considers three
sandwiched circular cylinders in tandem with periodic boundary condi-
tion, instead of endless circular cylinders orbiting in the bearing. The
referred roller bearing specifications are given in Table 1.

All three fluid domains are meshed with structured hexahedron grids
with the commercial software ANSYS ICEM. In order to avoid low mesh
quality, the radial clearance between the cylinder and the walls is
assumed here two times bigger than that in a real bearing. In the contact
regions, there is a minimum of 6 elements between the clearance at 10
levels of refinement. The average yþ (the dimensionless wall distance) is
in the range yþ < 5 on the walls, in order to capture the near-wall tur-
bulent region in a transient calculation. To match this requirement for all
calculation cases, much finer cells are used around the cylinder, with
about 1.25 million cells in the configuration #1 and 2.9 million cells for
the configurations #2 and 3.

2.2. Governing equations

When the roller transfers through the oil-air two phase flow in
bearing cavity, a shear stress is produced by the gradients of velocity at
the roller surface with no-slip condition. The shear stress sums to one part
of the total drag force exerting on the roller called the viscous drag.
Besides, the pressure of the fluid is greater on the front of roller than that
on the backside, which introduces the other part, called the pressure drag
or form drag [17].

To catch detailed shear stress and pressure distribution around the
cylinder in high Reynolds number, the SST Scale-Adaptive Simulation
(SAS) model is used, with the SIMPLEC pressure-velocity coupling
method. The SST SAS model explicitly adds a von Karman length scale to
the turbulence RANS model to dynamically adjust to resolved structures
in a URANS simulation, which results in a LES-like behavior in unsteady
flow field. At the same time, the model provides standard RANS capa-
bilities in stable flow regions [18].

The governing equations of the SST SAS model are followed,

∂ρk
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Fig. 1. Drag coefficient of ideal sphere and circular cylinder by Schlichting [5].

Fig. 2. Sketch of flow around a circular cylinder with two free ends [13].
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