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a b s t r a c t

From feasibility tests at laboratory scale to large industrial scale processes, modelling can be applied to
Organic Solvent Nanofiltration (OSN) for two purposes: (i) parameter estimation, when experimental data
for standard solute þ solvent systems are available, and it is desired to estimate relevant parameters for as
yet uncharacterised systems, and (ii) prediction, when the model parameters for the solvent–solute are
available, and modelling can be applied to describe the performance of a different solute þ solvent system
or operations at a different process scale. Both estimation and prediction require the choice of a transport
model, to carry out regression and simulation, respectively. This paper reports a systematic comparison of a
range of different transport models (irreversible thermodynamics, solution–diffusion, pore-flow and
transient transport models, such as the solution–diffusion with imperfections model) using selected
experimental data for various solutes and solvents through polymeric OSN membranes with different
physico-chemical properties. Commercial integrally skinned asymmetric polyimide (PI, glassy) and thin film
composite silicone-coated PI (rubbery) membranes from Evoniks MET were systematically tested in this
study, with styrene oligomers and Safranin-O dye in different organic solvents under uniform operating
conditions (temperature, pressure, cross-flow velocity and solute concentration). In addition, experimental
data from the literature were taken for non-commercial thin film composite silicone-coated PI, glassy poly[1-
(trimethylsilyl)-1-propyne] (PTMSP) and poly[4methyl2pentyne] (PMP) membranes, to include a broad
spectrum of positive and negative rejection values. The different transport models were used to perform
regression of experimental data and prediction at different pressure values, based on the regressed model
parameters. The models were then compared in terms of regression performance and experimental/
numerical effort required to use them for parameter estimation. Negative rejection data was used to further
discriminate among the models. Solution–diffusion-based models gave a better description of permeation
through flexible-chain glassy membranes than pore-flow models. On the other hand, pore-flow-based
models gave a better description of permeation through glassy PTMSP and PMP membranes. For integrally
skinned asymmetric PI membranes, the prediction of a concentration process using the best performing
regression models (i.e. the Maxwell–Stefan and the classical solution–diffusion model) was also performed.
Interestingly, no significant difference was observed between the two models for both a membrane with
complete solute rejection (Duramems 200) and a membrane with partial solute rejection (Duramems 500).
Process modelling by accounting for a classical solution–diffusion-type transport mechanism is therefore
sufficient to obtain a reliable transport description for this membrane family.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the beginning of membrane development, a substantial
amount of research has focused on the description of the transport
mechanism through membranes, for the purpose of process under-
standing and development. The development of membrane processes
usually involves several stages, starting from feasibility tests at

laboratory scale, passing through pilot plant tests and finishing with
large industrial scale processes [1]. As illustrated in Fig. 1, three levels
can be distinguished within the general process modelling framework:
(i) transport through the membrane, (ii) fluid dynamics and mass
transfer in membrane modules, and (iii) design at the process scale.

Across the different scales, modelling can be applied for two
purposes: parameter estimation and prediction, as shown in Fig. 2.

At the membrane scale, parameter estimation is performed
when experimental data for standard solute þ solvent systems
are available (Yn in Fig. 2(a) for standard solute A and solvent B),
and it is desired to estimate relevant parameters for as yet
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uncharacterised systems (w). Here, the unknown parameters,
characteristic of the model (solute, solvent, membrane or interac-
tion parameters) are obtained by linear or non-linear regression of
the experimental data. The learning algorithm is designed so as to
minimise an error measure between the model output (y) and the
corresponding desired, or target, output (Yn), to find an optimal
parameter vector (w) that provides the “best” approximation of y(x)
for a given transfer function (i.e. transport model). Once the model
parameters for the solvent–solute system are available, modelling
can be applied to perform prediction (cf. Fig. 2(b)):

� for the same solute þ solvent system (i.e. when the generic
solute i þ solvent j mixture corresponds to the mixture of
solute A and solvent B used to perform the parameter regres-
sion) at different operating conditions (pressure, temperature,
cross-flow velocity, concentration, etc.);

� for the transport performance of a different solute þ solvent
system: in this case, fundamental or empirical correlations
between model parameters and solute/solvent properties will
be used to estimate the model parameters (w) for the new
system i þ j;

Fig. 1. Modelling levels for the development of a membrane process: (a) membrane scale; (b) module scale; (c) process scale. (Adapted from Peshev and Livingston [1]).

Fig. 2. Schematic representation of the modelling process: (a) parameter estimation; (b) prediction.
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