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a  b  s  t  r  a  c  t

In  this  paper,  phasor  measurement  unit  (PMU)  data-based  synchronous  generator  model  identification
is  carried  out  using  unscented  Kalman  filter  (UKF).  The  identification  not  only  gives the  model  of  a  syn-
chronous  generator’s  swing  dynamics,  but also  gives  its turbine-governor  model  along  with  the  primary
and  secondary  frequency  control  block  models.  PMU  measurements  of active  power  and  voltage  magni-
tude,  are  treated  as the  inputs  to  the system  while  the measurements  of  voltage  phasor  angle,  reactive
power  and  frequency  are  treated  as the  outputs.  UKF-based  estimation  is  carried  out  to  estimate  the
dynamic  states  and  the  parameters  of the  model.  The  estimated  model  is then  built  and  excited  with the
injection  of  the  inputs  from  the  PMU  measurements.  The  outputs  of the  estimation  model  and  the  outputs
from  the  PMU  measurements  are  compared.  Case  studies  based  on PMU measurements  collected  from
a  simulation  model  and real-world  PMU  data  demonstrate  the  effectiveness  of the proposed  estimation
scheme.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Supervisory control and data acquisition (SCADA) systems use
nonsynchronous data with low density sampling rate to monitor
power systems. The measurements collected from SCADA cannot
capture the system dynamics. Phasor measurement units (PMUs)
equipped with GPS antenna provide voltage and current phasors
as well as frequency with a high density sampling rate up to 60 Hz.
PMU  data can capture the system electromechanical dynamics.
In this paper, PMU  data will be used for synchronous generator
parameter estimation.

Synchronous generator parameter estimation has been inves-
tigated in the literature. Based on the scope of estimation, some
only investigated electrical state estimation (e.g. rotor angle and
rotor speed) [1,2], while others estimated both system states and
generator parameters [3–6]. Based on estimation methods, there
are at least two major systematic methods for parameter estima-
tion: least squares estimation (LSE) [7–9] and Kalman filter-based
estimation [10–14]. To use LSE for dynamic system parameter esti-
mation, a window of data is required. On the other hand, Kalman
filter-based estimation can carry out estimation procedures at each
time step. Thus Kalman filter-based estimation can be used for
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online estimation. This is also one of the reasons why PMU  data-
based system identification opts for Kalman filter-based estimation
[10–14].

Kalman filter was originally proposed for the linear systems.
For nonlinear systems, there are two approaches to handle non-
linearity: extended Kalman filter (EKF) and unscented Kalman
filter (UKF). In EKF, nonlinear systems are approximated by lin-
ear systems using linearization techniques. EKF was first applied
by PNNL researchers in dynamic model identification using PMU
data [5,6,10]. Huang et al. [5] focuses on parameter calibration
for a simple generator dynamic model. Kalsi et al. [6] present
parameter calibration for a multi-machine power system under
varying fault locations, parameter errors and measurement noises.
In [10], parameter calibration for a more complicated generator
model which includes electromechanical dynamics, electromag-
netic dynamics, exciter dynamics, voltage control blocks and power
system stabilizer (PSS), was presented. EKF-based simple genera-
tor model estimation was also carried out in [12,11]. Limitations of
EKF method have also been investigated in [11].

In UKF, a nonlinear system model will not be linearized. The
stochastic characteristic of a random variable is approximated by a
set of sigma points. This technique is essentially Monte-Carlo sim-
ulation technique. Dynamic process of these sigma points will be
computed based on the nonlinear estimation model. Statistic char-
acteristics of the dynamic process will then be evaluated. UKF can
overcome the limitation of the linearization process required by the
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EKF method. However, more computing effort is required due to the
introduction of sigma points. In [13], UKF is applied for state estima-
tion. Accuracy and convergence for both EKF and UKF are compared
in [13]. This paper focuses on state estimation only. Parameter esti-
mation was not discussed. In [14], UKF is applied to estimate the
following parameters Eq, x′

d
and H along with states. A comparison

of various Kalman filter methods is documented in [15].
The synchronous generator model identified in the afore-

mentioned papers focuses on the generator electromechanical,
electromagnetic and excitation system only. For example, a 4th
order transient generator estimation model is assumed in [15]; a
subtransient generator estimation model is adopted in [10]. None
has addressed frequency control system identification. The goal
of this paper is to apply UKF for parameter and state estimation
for a synchronous generator model consisting of electromechani-
cal dynamics and frequency control. Contributions of this paper are
summarized in the following paragraphs.

• Not only electromechanical dynamics related states and parame-
ters, but also turbine-governor dynamics, primary and secondary
frequency control parameters will be estimated. Estimation
related to frequency control based on PMU  data has not been
seen in the literature.

Particularly, we will estimate the following parameters and
states: inertia constant H, damping factor D, internal voltage
Eq, transient reactance x′

d
, mechanical power input Pm, Droop

regulation R, turbine-governor time constant Tr, and secondary
frequency control integrator gain Ki.

Some parameters are difficult to estimate due to nonlinearity.
Parameters conversion is adopted in this paper in order to make
estimation easier.

• Event playback method [10] is used in this paper to validate the
identified low-order model. For validation, estimated parameters
will be used to create a dynamic simulation model. Then event
playback will be used to inject the same inputs to the dynamic
simulation model. The output signals from the simulation will be
compared with the PMU  measurements.

• Lastly, real-world PMU data-based identification will be used to
demonstrate the effectiveness of the proposed estimation model.

This paper is organized as follows. Following a description of
basics of UKF algorithm in Section 2, the implementation of UKF
for dynamic generator model estimation is discussed in Section 3.
Section 4 presents the validation process and case studies. Finally,
Section 5 presents the conclusions of this paper.

2. Basic algorithm of UKF

A continuous nonlinear dynamic system is represented by the
following equations.{
ẋ(t) = f̄ [x(t), u(t), v(t)]

y(t) = h[x(t), u(t), v(t)] + w(t)
(1)

where x(t) is the vector of state variables, y(t) is the vector of output
variables, u(t) is the vector of input variables, v(t) is the non-additive
process noise, and ω(t) is additive measurement noise. Considering
the time step of �t,  (1) can be written as (2) in the discrete time
domain:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk = xk−1 + f̄ [xk−1, uk−1, vk−1]�t

= f [xk−1, uk−1, vk−1]

yk = h[xk, uk, vk] + wk
(2)

The state xk is considered as a random variable vector with an
estimated mean value x̂k and an estimated co-variance Pxk . Vector
 k is considered as a set of unknown model parameters. For sim-
plification,  k can also be treated as states, where  k+1 =  k. Then,

the new state vector is Xk =
[
xk
T  k

T
]T

. The state-space model
in (2) is reformulated as:{
Xk = f [Xk−1, uk−1, vk−1]

yk = h[Xk, uk, vk] + wk
(3)

Kalman filter is a recursive estimation algorithm. At each time
step, given the previous step’s information, such as the mean of the
state X̂k−1, the covariance of the state PXk−1

, Kalman filter estimation
will provide the statistic information of the current step, i.e.,  the
mean of the state X̂k and the covariance of the state PXk . Usually
a prediction step estimates the information based on the dynamic
model only, and a correction step corrects the information based
on the current step’s measurements. There are several references
for UKF algorithm in literatures. For rest of this section, [16] is the
reference for all UKF algorithm related equations.

Unscented Kalman filter (UKF) is a Monte-Carlo simulation
method. A set of sigma points will be generated based on the given
statistic information: mean and covariance of the states. Sigma
point vectors will emulate the distribution of the random variable.
The set of sigma points is denoted by �i and their mean value repre-
sented by X̂ while their covariance represented by PX. For n number
of state variables, a set of 2n + 1 points are generated based on the
columns of matrix

√
(n + �)PX . As shown below, at k − 1 step, 2n + 1

sigma points (vectors) are generated.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�0
k−1 = X̂k−1

�i
k−1 = X̂k−1 +

[√
(n + �)PXk−1

]
i
, i = 1, . . .,  n

�i+n
k−1 = X̂k−1 −

[√
(n + �)PXk−1

]
i+n, i  = 1, . . .,  n

(4)

where � is a scaling parameter (� = ˛2(n + �) − n),  ̨ and � are pos-
itive constants. In the prediction step, prediction of the next step
state will be carried out for all these sigma points. Based on the
information of the sigma points of the next step, the mean and the
covariance of the states will be computed. UKF will use weights
to calculate the predicted mean and covariance. The associated
weights are as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wm0 = �

(n + �)

Wc0 = �

(n + �)
+ (1 − ˛2 + ˇ)

Wmi = 1
2(n  + �)

, i = 1, . . .,  2n

Wci = 1
2(n  + �)

, i = 1, . . .,  2n

(5)

where  ̌ is a positive constant, Wmi is used to compute the mean
value, and Wci is used to compute the covariance matrix. ˛, � and ˇ
are the Kalman filter parameters which can be used to tune the fil-
ter. Scaling parameter  ̌ is used to incorporate prior knowledge of
the distribution of x(k) and for Gaussian distribution  ̌ = 2 is optimal
[18]. The scaling parameter  ̨ is a positive value used for an arbi-
trary small number to a minimum of higher order effects. To choose
˛, two  laws have to be take into accounts. First, for all choices of
˛, the predicted covariance must be defined as a positive semidefi-
nite. Second, The order of accuracy must be preserved for both the
mean and covariance [17]. See [18,17] for more details regarding
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