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power  systems.  The  performance  of the  method  is evaluated  for  different  power  system  models  and  is
found to  be very  accurate.
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1. Introduction

Monitoring and detection of the oscillatory modes contained in
a post-disturbance “ringdown” response can provide vital informa-
tion for power system stability [1]. Mode estimation from ringdown
responses can reflect directly, and almost in real-time, the dynamic
characteristics of a system. Several techniques have been proposed
to analyze online and offline ringdown responses. Among the most
popular are the spectral analysis by means of Fourier transform
[2], the Prony [3] and the matrix pencil [4] methods, as well as
the Hilbert–Huang transform [5]. In 1999 vector fitting (VF) [6,7]
was proposed, as a powerful and very accurate method for system
identification in the frequency-domain (FD) and thus it has been
adopted in many engineering areas, including high voltage power
systems, microwave systems and high-speed electronics. VF proved
to be robust and fast, providing very accurate fitting with guaran-
teed stable poles. In this short communication VF is implemented
for the first time in the identification of the oscillatory modes of
ringdown responses in power systems.
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2. Ringdown analysis

A system ringdown response containing N modes is described
by:

y (t) =
N∑
i=1

1
2
Aie

±jϕi e�it =
N∑
i=1

Aie
�it cos(ωit + ϕi) (1)

where �i = �i ± jωi stand for the system eigenvalues, ωi = 2�fi and
�i are the angular frequency and the damping factor of the i-
th mode, and Ai, ϕi are the corresponding amplitude and phase,
respectively [1]. The Laplace transform Y(s) of (1) is a rational func-
tion expressed by:

Y (s) =
N∑
i=1

ci
s − pi

(2)

where pi and ci are the poles and residues defined as:

ci =
Ai × e±jϕi

2
, pi = �i = �i ± jωi (3)

Given a fixed number of samples for Y(s) as resulted from apply-
ing the Fast Fourier Transform (FFT) to the discretized form of (1),
VF can approximate (2) by means of a two-stage linear least squares
problem [6,7]. At the first stage, VF relocates a set of initial poles to
better positions by solving the linear equation of (4) with the known
poles ˛(m)

k
, where m denotes the m-th iteration. Since the zeros

z̃(m)
k

of � ′(m)(s) approach the poles pi of Y(s), they are calculated by

solving the eigenvalue problem of (5) with d̃(m) and matrices A(m),
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Fig. 1. Comparison of the original and fitted FD response. (For interpretation of the references to color in the text, the reader is referred to the web  version of this article.)

b(m) and c(m) defined by the rational model of � ′(m)(s). By replacing
the poles with the new ones, an improved set is achieved until ˛(m)

k
tends to pi. At the second stage, the unknown residues are calcu-
lated by solving (4) with � ′(m)(s) equal to unity [6,7]. Finally, the
mode parameters contained in the ringdown are calculated from
the resulting poles using (3).(

N∑
k=1

r̃(m)
k

s − ˛(m)
k

+ d̃(m)

)
︸ ︷︷  ︸

�′(m)(s)

Y (s) ∼=
N∑
k=1

r(m)
k

s − ˛(m)
k

+ r(m)
0︸  ︷︷  ︸

�′Y (m)(s)

(4)

z̃(m) = ˛(m+1) = eig
(
A(m) − b(m)d̃−1(m)cT (m)

)
(5)

3. Numerical results

3.1. Synthetic signal mode identification

The performance of VF for mode identification is evaluated using
test signal 1 (TS1) of (6) [8]. TS1 is generated at a rate of 100 sam-
ples/s (sps) assuming total observation time of 30 s to simulate a
PMU  data stream [1,9]. The number of the identified poles is auto-
matically adjusted, by reaching either the maximum number of
poles or the relative error tolerance criteria. Possible additional arti-
ficial modes, which are mostly observed in cases of noise distorted
signals, are surplus to the dominant modes. These modes can be
easily detected and removed, since they are characterized by sig-
nificantly low amplitude or high frequency. In the examined case,
the spectrum of the ringdown is fitted by VF assuming a maximum
of 10 poles and a relative error tolerance equal to −40 dB.

yTS1 (t) = 1.0 × e−0.1697t cos (2� × 0.2284 × t − 0.8�)︸ ︷︷  ︸
mode#1

+ 1.32 × e−0.815t cos (2� × 0.625 × t + 0.6�)︸  ︷︷  ︸
mode#2

+ 1.13 × e−1.823t cos (2� × 1.029 × t + 0.1�)︸  ︷︷  ︸
mode#3

(6)

The resulting FD magnitude of the original and the fitted spec-
trum are compared in Fig. 1. As shown in the right y axis, depicted
with red color, the absolute deviation is lower than 4.0E − 5 over
the whole frequency range, while in Table 1 the relative prediction
error (PE) is found to be very small for all mode parameters. The

Table 1
% PE of the identified mode parameters.

Mode #1 Mode #2 Mode #3

� 5.7E − 4 9.9E − 3 2.9E − 3
ω  3.1E − 4 2.9E − 3 1.3E − 2
A  3.7E − 2 1.5E − 2 2.4E − 2
ϕ  1.9E − 2 1.4E − 2 2.3E − 1

identified mode parameters are used to simulate the time-domain
(TD) response in Fig. 2 and negligible differences are observed com-
pared to the original ringdown response, since the coefficient of
determination (R2), defined in (7), is 99.97%.

R2 =

⎛
⎜⎜⎜⎜⎝1 −

M∑
k=1

(
y (k) − ŷ (k)

)2

M∑
k=1

(y (k) − ȳ)2

⎞
⎟⎟⎟⎟⎠ × 100, (7)

where y is the original signal response with mean value ȳ and ŷ
is the corresponding signal estimate. A 100% value for R2 reveals
that the original signal is perfectly fitted, while a 0% value that the
estimated signal is a constant (ŷ= ȳ).

Moreover, the computational burden of the proposed identifi-
cation method is investigated using an Intel Core i7-4770, 3.4 GHz,
RAM 8 GB personal computer. The resulting processing timings and
R2 are summarized in Table 2 for different sampling rates. It can be
seen that the method can accurately fit the signal response and
extract the dominant modes in all cases. The corresponding com-

putational time is significantly low for sampling rates up to 100 sps
that most PMUs support, revealing the feasibility of the proposed
method for online applications.



Download English Version:

https://daneshyari.com/en/article/704700

Download Persian Version:

https://daneshyari.com/article/704700

Daneshyari.com

https://daneshyari.com/en/article/704700
https://daneshyari.com/article/704700
https://daneshyari.com

