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A B S T R A C T

A deep learning approach combining with the traditional solid isotropic material with penalization (SIMP)
method is presented in this paper to accelerate the topology optimization of the conductive heat transfer. This
deep learning predictor is structured based on the deep fully convolutional neural network. The validity and
accuracy of this deep learning approach is investigated based on the typical ‘Volume-Point’ heat conduction
problems. The time consumption of the optimization process will be reduced significantly by introducing the
deep learning approach.

1. Introduction

Increasingly integrated and miniaturized electronic devices require
more efficient ways of extracting internal heat out of the system. A valid
approach named as conductive heat transfer by introducing a limited
amount of conduit materials with high thermal conductivity is
spreading utilized [1, 2], especially when the electronics to be cooled
has a low thermal conductivity and its volume is restricted. The high
thermal conductivity materials form the cooling path for aiding to heat
transfer to the environment or heat sink [3]. To augment and improve
the thermal performance, several methods have been developed to
design and optimize the distribution and layout of a limited amount of
high conductive material, such as the constructal theory [4], the vari-
able thickness method [5], the evolutionary structural optimization
(ESO) method [6], the level set method [7], the bionic method [8], and
so on.

The solid isotropic material with penalization (SIMP) method is
another simple and efficient approach, which is widely introduced to
the topology optimization of conductive heat transfer [9–12]. For the
layout design of the restricted conduit materials with high thermal
conductivity kh in the basic materials with low thermal conductivity k0,
the design goal is to obtain the optimal distribution of these two dif-
ferent thermal conductivities in the design domain. The optimizing
problem becomes have only one variable, that is the effective thermal
conductivity, based on the SIMP method by introducing a design
parameter δ. Thus, the effective thermal conductivity k throughout the
whole design domain is redefined as.

k= k0+ δp(kh− k0),δ∈ [0,1]
Where δ=0 represents the basic material (k= k0);δ=1 corre-

sponds to the conduit material (k= kh);0 < δ < 1represents a com-
posite material consisting of basic material and conduit material. For
encouraging the optimization algorithm to favour design variables of
either δ=0 or δ=1 and reducing the amount of composite material, a
penalization factor p is introduced (p > 1).

For the topology optimization of a typical ‘Volume-Point’ heat
conduction problem (seeing Fig. 1), the change process of material
layout from iteration to iteration based on the SIMP method is pre-
sented in Fig. 2. It is very clear that the first stage of topology optimi-
zation for conductive heat transfer based on the SIMP method is the
general redistribution of the materials, and the layout of the materials
varies tremendously iteration by iteration as shown from Fig. 2(a) to
(d). The second stage is converging and correcting the material layout
to the final results. At this process, the silhouette as well as the global
layout structure of the materials keeps unchanged and only the local
structure will be corrected to the final converging result as shown from
Fig. 2(e) to (h). Based on this characteristic, the second stage of to-
pology optimization could be seen and treated as a process of the image
segmentation and recognition.

Deep learning with the intrinsic superiorities of high efficiency and
accuracy is widely approached in many fields including the image
segmentation and recognition [13–17]. In this paper, an application of
deep learning on the topology optimization for conductive heat transfer
is investigated by introducing a deep learning method into the second
stage of topology optimization based on the SIMP method.
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2. Methodology and model

In current work, the topology optimization of conductive heat
transfer is based on the distribution of the high thermal conductive
materials with a restricted volume fraction within a design domain.
Considering the steady state heat conduction, the temperature field of
conductive heat transfer in a two-dimensional design domain Ω is
governed as follows:
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where k and T denote the effective thermal conductivity and the tem-
perature distribution influenced by the parameter δp based on SIMP
method, Q represents the heat generating rate within the heat source.

For the boundary S of the design domain Ω, two boundary condi-
tions are introduced as
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where S= S1 ∪ S2. S1 represents the boundary of the heat sink, whose
temperature is set as a fixed value of T0, and T0= 0 in current work.
The heat flux along the outward normal vector in the boundary S2 is
equal to 0, which denotes the adiabatic boundary condition.

By applying the finite element method to solve the temperature
field, the governing equation will be rewritten as

=KT F

where K, T and F represent the global conductivity matrix, the nodal
temperature vector and the nodal load vector, respectively.

The volume of the design domain Ω is V0. The volume fraction of the
high thermal conductive material is restricted to ϕmax. The optimization
problem of the layout for the materials with high thermal conductivity
can be formulated as.
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where N is the total number of the discrete element, v denotes the
volume, and the subscript e represents that it is the variable size in the
element. Thus, iδe denotes the design parameter of the element i.

The optimization problem is solved using the optimality criteria
method (OCM) presented in [18]. The convergence criterion is that the
difference ε in the design parameter δ between the two iterations before
and after is less than 0.01. Due to the intrinsic checkerboard problem of
the SIMP method, in order to obtain the final layout without any
composite material, that is the value of design parameter δ must be 0 or
1, a filtering technique named as ‘Image Binarization’ is applied onto
the result of the converging iteration, and the threshold is selected by
the golden section method. For the optimization of the ‘Volume-Point’
problem as shown in Fig. 1, the final layout of the material with high
thermal conductivity before and after filtering processing is presented
in Fig. 3(a) and (b). The volume fraction of the materials with high
thermal conductivity is restricted to 30% in current case, ϕmax= 0.3.
Throughout this paper, the heat sources are evenly distributed inside
the design domain (as shown in Fig. 1), and their heat generating rate is
equal to 1.

3. Deep learning and training

According to the characteristic of the optimization process of the
conductive heat transfer based on the SIMP method, an initial iterating
is conducted using the SIMP method, and then its result is input into a
deep learning predictor. After the training and learning by the deep
learning predictor, a predicted layout of the materials with high
thermal conductivity will be output as the final result of the topology
optimization. The deep learning predictor is based on a deep fully
convolutional neural network in current work, consists of an encoder
and a decoder and its architecture is similar with the U-Net system
presented in [19]. The architecture of the deep learning predictor in
current work is presented in Fig. 4.

The encoder of this deep learning predictor consists of eight con-
volutional layers, as illustrated in Table 1 and Fig. 4. This encoder could
be divided into four levels, and each level contains two convolutional
layers. The kernel size of every convolutional layer is 3× 3. Each
convolutional layer in the level 1 contains eight feature maps. The
number of the feature map for each convolutional layer in level 2, level
3 and level 4 is 16, 32 and 64, respectively. The activation function of
the convolutional layer is ReLU function. For the first six convolutional
layers, a Max pooling layer is inserted after every two convolutional
layers, and its kernel size is 2× 2. The function of the Max pooling is
reducing the number of parameters and guaranteeing the translation
invariance of inputs. To improve the learning capacity and avoid over-
fitting during the training process, a Dropout layer is inserted as the
regularization between the third and fourth convolutional layers in
current work. The decoder of this deep learning predictor reverses the
construction of the encoder as presented in Table 1, so it also consists of
eight convolutional layers. However, the Max pooling layers are re-
placed with the Up sampling layers, and every Up sampling layer is
followed by a concatenation. Followed the decoder, a fully convolu-
tional layer is introduced as the output layer, whose kernel size is
1× 1, and its activation function is Sigmoid function. The input of the
deep learning predictor in current work is two figures obtained from the
topology optimization based on the SIMP method: one is the distribu-
tion of the design parameter δ, and the other is the difference of the
design parameter between the two iterations before and after, that is
the gradient distribution of the design parameter δ.

A pseudo-random sample problem of conductive heat transfer is
design to generate the training dataset for deep learning. The grid
number is 80×80 in current work. In order to improve the universality
of the algorithm and prevent the over-fitting phenomenon during
training, the volume fraction of the high thermal conductive material

Fig. 1. The model of the typical ‘Volume-Point’ heat conduction problem.
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