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A B S T R A C T

The influence of the air variable properties on the buoyancy-driven airflows established in vented square cavities
with an inner heated body is numerically investigated. Two-dimensional, unsteady, and turbulent simulations
are obtained, considering uniform wall temperature heating conditions. The low-Reynolds k−ω turbulence
model is employed. The average Nusselt number and the dimensionless mass-flow rate are obtained for a range
of the Rayleigh number varying from 104 to 1012. The results obtained for different heating intensities are
analyzed and compared. The conditions under which the flow becomes clearly transient, giving rise to an os-
cillatory solution, are determined. The dimensionless oscillating period of the transient Nusselt number exhibits
a logarithmic decay as a function of the Rayleigh number. The structure of the flow into the cavity as a function
of time, are shown.

1. Introduction

1.1. Background

The natural convection airflows in cavities and enclosures has re-
ceived a considerable attention from researchers (Ostrach [1], Bejan
[2], Henkes and Hoogendorn [3], Turan et al. [4], among others).
Several geometries have been studied, including different heating
conditions. Examples of numerical studies focused on square cavities
with different morphologies, are the works conducted by Bilgen and
Balkaya [5], and Muftuoglu and Bilgen [6], for instance.

The case commonly known as cavity heated from the side consists of a
cavity (rectangular or square in most of cases) in which the horizontal
walls are insulated, whereas the vertical walls are at hot (Th) and cold
(Tc) temperatures, respectively; the numerical benchmark solution of
De Vahl Davies [7] has constituted a reference work for comparison and
validation purposes (Markatos and Pericleous [8], Ampofo and Kar-
ayiannis [9], Ridouane et al. [10], for instance). Another sample con-
figuration is that known as cavity heated from bellow. The fundamental
difference between the enclosures or cavities heated from the side and
those heated from below has clearly exposed by Bejan [2]. In the first
configuration, the convective flow is present for very small temperature
difference (Th− Tc) between the two opposite side walls. On the con-
trary, in the second configuration, the temperature difference must
exceed a given critical value, above which the flow induced by buoy-
ancy forces is detected.

Let us consider two parallel plates in the horizontal direction, being

heated the lower one and cooled the upper one. When the plates are
long enough, the convective flow appears above a critical value of the
Rayleigh number (based on the inter-plate spacing H) equal to 1708.
The flow pattern is commonly named as Rayleigh-Bénard convection, and
it can be identified by counterrotating two-dimensional rolls, being the
cross section almost square. For larger values of RaH, the cells break
down and the motion is turbulent (mainly for RaH>105). Similar
structures to the Bénard cells can appear under given circumstances in
other configurations, such as cavities or enclosures, in which the
bottom plate can be fully or partially heated. As expected, several works
can be found in this matter, as experimental (Corvaro and Paroncini
[11], for instance), as numerical (Sourtiji et al. [12], among others).
The last authors validated their numerical results with those obtained
by Khanafer et al. [13] and Markatos and Pericleus [8], for enclosures
heated from the side. Basically the same configuration was considered
by Calcagni et al. [14] in their numerical and experimental study.
Sharma et al. [15] validated their turbulent numerical results with
those obtained for Calcagni et al. [14] and Aydin and Yang [16]. The
last works will be considered in this work for validation purposes
(configuration of Fig. 1a).

1.2. Cavities including an immersed body

Because of the considered bodies or obstructions within the cavity
may increase (or decrease) the Nusselt numbers at walls, a considerable
research on this matter can be found in the literature. In addition, for
the fully understanding of the flow characteristics, it is necessary the
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study of the structures of resulting buoyant plumes, as well as their
stability or the presence of bifurcation points as the Rayleigh number
increases, for different geometric configurations (Gebhart et al. [17],
Desrayaund and Lauriat [18], Bouafia and Daube [19], among others).

Sun et al. [20] conducted a numerical study of combined natural
convection and surface radiation in a square cavity with a centered
(heated) immersed body, on the basis of their previous experimental
experiences. The considered configuration is outlined in Fig. 1b. The
flow motion is stable up to a RaH ≈ 2×105 for pure convection. Below
this value, the flow is steady and symmetric, but for larger values of
Rayleigh, the flow becomes unsteady and asymmetric. For stable sce-
narios, they detected two symmetric, counter-rotating, Rayleigh-Bénard
type cells at the upper part of the cavity, in turn delimited by two large
cells rotating in opposite directions along the vertical walls. Given the
similarities, note that this cited work can be considered as a reference
for our computations.

Studies focusing on other aspects of the problem, such as the effects
of the variable thermophysical properties of air are more scarce, al-
though it can be found some relevant works, such as those of Bouafia
and Daube [19], using the low Mach number approximation, as well as
Sourtiji et al. [12], in this case for a square enclosure heated from
below, without any baffle in the interior.

1.3. Variable thermophysical properties

Numerically, the force driving the flow can be simulated by means
of the Boussinesq approach, which only retains the density variations
due to thermal gradients in the buoyancy term of the momentum
equation (the rest of the properties are considered constant). However,
intense heating conditions can change drastically the properties of the

flow, and therefore the predictions of the heat transfer coefficients at
walls (Emery and Lee [21], Guo and Wu [22], Hernández and Zamora
[23]). In the field of interest, the influence of the variable properties of
fluid should not be neglected in some cases; in fact, this work analyses
the behavior of the flow under intense heating conditions. In the con-
cerned literature, under given circumstances a clear decrease of the
heat transfer coefficients are detected for intense heating conditions,
due to the thermal drag (related to the density decreasing) and the vis-
cous drag (related to the viscosity increasing) phenomena, described for
instance by Guo and Wu [22] and Hernández and Zamora [23].

1.4. Objectives

A limited attention has deserved the explained convective airflow
when the cavity is considered as partially open, i.e., with some vents
through which the fluid can entry or exit, besides a centered inner body.
The regarded configuration is given by Fig. 1c. Here, the flow mainly
enters through the lower vents of width b, and goes up mainly through
the upper vents. The immersed body is heated at uniform temperature
Th, whereas the rest of the walls remain adiabatic. The structure of the
flow motion will be studied, following the ideas exposed in the litera-
ture previously cited. It can be expected that the flow was turbulent and
unstable or oscillating for high values of the Rayleigh number. Hence,
the numerical simulation is carried out as transient. The Rayleigh
number from which the flow becomes oscillating (and therefore un-
steady), will be determined. In addition, the transience of the flow will
be explained, highlighting the oscillating flow patterns encountered for
given ranges of parameters.

Nomenclature

b width of the vents, m (Fig. 1c)
cp specific heat at constant pressure, J kg−1 K−1

Fo Fourier number, = ∞α t lFo /0
2

g gravitational acceleration, m s−2

Grl Grashof number − ∞ ∞gβ T T l ν( ) /w
3 2

H height of the cavity (Fig. 1), m
Hc height (and length) of the heated inner body (Fig. 1b and

c), m
hx local heat transfer coefficient, − ∂ ∂ − ∞κ T n T T( / ) /( )w w , W
m−2 K−1

L length of the cavity (Fig. 1), m
Lh length of the heated wall (Fig. 1a), m
l typical length, m
M dimensionless mass-flow rate, ∞ ∞m ρ α/
m mass-flow rate, kg s−1 m−1 (two-dimensional)
Nul average Nusselt number based on l, isothermal cases, Eq.

(3)
Nux local Nusselt number, hxl/κ
P average reduced pressure, N m−2

p pressure, N m−2

Pr Prandtl number, μcp/κ
R constant of air, R=287 J kg−1 K−1

Ral Rayleigh number based on l, (GrH)(Pr)∼Ral Rayleigh number from which the flow becomes oscillating
T, T′ average and turbulent temperatures, respectively, K
∼T dimensionless oscillating period
t, t0 time, typical time, s

− ′T uj average turbulent heat flux, K m s−1

Uj, uj average and turbulent components of velocity, respec-
tively, m s−1

− u ui j turbulent stress, m2 s−2

uτ friction velocity, uτ=(τw/ρ)1/2, m s−1

V absolute value of velocity, m s−1

x, y cartesian coordinates (Fig. 1), m
y1 distance between the wall and the first grid point, m
y+ ρy1uτ/μ

Greek symbols

α thermal diffusivity, κ/ρcp, m2 s−1

β coefficient of thermal expansion, ∞T1/ , K−1

κ thermal conductivity, W m−1 K−1

Λ heating parameter, Eq. (2)
μ viscosity, kg m−1 s−1

ν kinematic viscosity, μ/ρ, m2 s−1

θ dimensionless temperature difference, = − ∞ ∞θ T T T( )/(Λ )
ρ density, kg m−3

τ dimensionless time, = ∞τ α t l/ 2

τw wall shear stress, N m−2

ω specific dissipation rate of k, s−1

Subscripts

c cooled
h heated
w wall
∞ ambient or reference conditions

Superscripts

− averaged value
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