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a b s t r a c t

A structure-based model has been constructed, for the first time, for the study of passive scalar transport

in turbulent flows. The scalar variance and the large-scale scalar gradient variance are proposed as the two

turbulence scales needed for closure of the scalar equations in the framework of the Interacting Particle

Representation Model (IPRM). The scalar dissipation rate is modeled in terms of the scalar variance and the

large-scale enstrophy of the velocity field. Model parameters are defined by matching the decay rates in

freely isotropic turbulence. The model is validated for a large number of cases of deformation in both fixed

and rotating frames, showing encouraging results. The model shows good agreement with DNS results for

the case of pure shear flow in the presence of either transverse or streamwise mean scalar gradient, while it

correctly predicts the presence of direct cascade for the passive scalar variance in two dimensional isotropic

turbulence.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The transport of passive scalars is of great scientific interest since

it plays a role in physical phenomena such as atmospheric dispersion

and in engineering applications involving turbulent mixing. The term

passive scalar refers to the simplified case where a scalar is present

in such a low concentration that it does not influence the evolution of

the fluid flow. Hence, the transport of passive scalars is also a conve-

nient simplified starting point for the study of processes where one

expects a more complex interaction between the scalar and the fluid

flow, such as reacting flows with concentration gradients and heat

release.

At sufficiently high Reynolds numbers, the predominant the-

ory for the description of the velocity field statistics is based on

Kolmogorov’s 1941 idea of local isotropy, which assumes that the

small scales remain mostly isotropic, independently of the pres-

ence of any large-scale anisotropies. By analogy, similar arguments

were extended by Obukhov (1949) and Corrsin (1951) to describe

the statistics of a passive scalar in homogeneous and isotropic tur-

bulent flow at high Reynolds and Peclet numbers. The assumption

of local isotropy enables the drastic simplification of the governing

transport equations and leads to similarity solutions for the passive

scalar and velocity fields, even in the presence of mean scalar gradi-

ents (Chasnov, 1993). The simplicity and elegance of such solutions
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has motivated a large amount of work in the literature (Danaila et al.,

2012; Ma and Warhaft, 1986).

Yet, deviation from small-scale isotropy has been observed exper-

imentally by a number of workers. For example, (Tong and Warhaft,

1994) considered the case of isotropic turbulence in the presence

of a transverse mean scalar gradient, finding that (φ′
,y)

2 ∼ 1.4(φ′
,x)

2

where φ′ denotes the fluctuating passive scalar and y is the direc-

tion of the mean gradient. A similar observation was published some

years earlier by Sreenivasan et al. (1977) for shear turbulence, again in

the presence of transverse mean scalar gradient. The departure from

isotropy for small-scale second-order statistics that was reported in

these studies was relatively small. However, in the case of third order

small-scale statistics, the assumption of small-scale isotropy breaks

down entirely, as first reported by Stewart (1969) for high Reynolds

and Peclet number measurements in the atmospheric boundary layer.

Stewart observed that the scalar-derivative skewness, defined as

Sφ′
,x

= (φ′
,x)

3/[(φ′
,x)

2]3/2, (1)

was of order one and not zero, as small-scale isotropy requires. Based

on experimental observations, (Sreenivasan and Tavoularis, 1980) ar-

gued that the skewness should vanish only when the mean shear and

the mean scalar gradient are both zero. In all other cases, it was found

that:

(a) sgn(Sφ′
,x
) = −sgn(S)sgn(Sφ ) 1 ,

1 Also mentioned in Mestayer (1982)
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(b) |Sφ′
,x
| varies linearly with the magnitude of �0Sφ/(φ′2)1/2 ,

(c) |Sφ′
,x
| depends on the history of S ,

where �0 is the characteristic lengthscale of the large eddies, Sφ is

the magnitude of the mean scalar gradient and S is the magnitude

of the mean velocity gradient, both imposed transverse to the mean

flow direction. Clearly the three above observations show that scalar

derivative skewness is directly linked to both the mean field and the

large-scale structure.

The aforementioned efforts addressed passive scalar transport in

non-rotating flows. Recently, however, significant effort has been di-

rected to the study of passive scalar transport in shear flows in rotat-

ing frames as well. Brethouwer (2005) performed a number of DNS

computations at different frame rotation rates for the case of homo-

geneous shear flow in the presence of mean scalar gradient. Particu-

larly, for the case of a transverse mean scalar gradient, he observed

that scalar flux in the mean flow direction tends to become much

larger compared to the flux in transverse direction. The DNS study

of Kassinos et al. (2007) provided additional supporting evidence for

the strong dependency of the passive scalar transport on the relative

strength of the frame rotation rate and the mean shear rate and em-

phasized the role played by the large-scale turbulence structure in

determining passive scalar transport.

1.1. General approach and objectives

The significant effect that the large-scale structures have on the

evolution of the small-scale scalar statistics (Shraiman and Sigga,

2000) has motivated us to construct a structure-based model (SBM)

for passive scalar transport with the ability to account for these ef-

fects. Such an SBM for passive scalar transport could be based either

on the Interacting Particle Representation Model (IPRM) (Kassinos

and Akylas, 2012) or a simplified engineering SBM such as the Al-

gebraic Structure-Based Model (ASBM) (Panagiotou and Kassinos,

2015). In either case, the intent is to take advantage of the turbulence

structure information carried in these models in order to provide im-

proved predictions of scalar transport. In order to accomplish this in

a self-consistent framework, we found it necessary to develop a set of

transport equations for the scales of the passive scalar field that are

sensitized to the structure of the large scales.

In Section 2, we give a brief summary of the one-point turbulence

structure tensors and the IPRM framework. In Section 3, we develop

an extension of the IPRM model to account for the passive-scalar

statistics. In order to bring the extended IPRM model into a closed

form, a set of structure-based scales for the passive scalar field is de-

rived and discussed in Section 4 through Section 6. The validation of

the complete structure-based model equations for a large number of

test cases is carried out in Section 7, leading to encouraging results. In

Section 8, we outline our future plans to adapt the current approach

for use with the ASBM and show preliminary results that appear to

be promising. A summary and conclusions are given in Section 9.

2. Mathematical background

2.1. The governing equations

The transport of a passive scalar φ in an incompressible fluid with

no buoyancy effects is governed by the continuity, momentum and

passive scalar transport equations,

ui,i = 0, (2a)

∂t ui + ujui, j = − 1

ρ
p,i + νui, j j, (2b)

∂tφ + ujφ, j = γφ, j j , (2c)

where ρ is the density of the fluid and ui, p, φ are the instantaneous

velocity, pressure and passive scalar fields respectively. The fluid vis-

cosity and scalar diffusivity are denoted by ν and γ respectively.

Hereafter, we are using index notation whereby repeated indexes im-

ply summation and an index following a comma denotes differenti-

ation with respect to the corresponding spatial coordinate. Applying

Reynolds’ decomposition of the flow variables,

ui = ui + u′
i, p = p + p′, φ = φ + φ′, (3)

to Eq. (2) leads to the set of equations governing the transport of

the turbulence fluctuations. For the case of homogeneous turbulence

these take the form,

u′
i,i = 0, (4a)

∂t u′
i + uju

′
i, j = −Giku′

k − u′
ju

′
i, j − 1

ρ
p′

,i + νu′
i, j j, (4b)

∂tφ
′ + ujφ

′
, j = −� ju

′
j − u′

jφ
′
, j + γφ′

, j j, (4c)

where Gi j = ui, j and �i = φ,i are the mean velocity gradient tensor

and mean scalar gradient vector respectively.

2.2. The one-point turbulence structure tensors

In the context of Reynolds Averaged Navier–Stokes (RANS), it is

important to have good one-point measures of turbulence anisotropy.

As shown by Kassinos and Reynolds (1994); Kassinos et al. (2001),

such anisotropy measures must take into account the morphology of

the large energy-containing eddies. These coherent structures tend

to organize the fluctuating motion in their vicinity and in the pro-

cess create anisotropy in both the componentality and the dimen-

sionality of the turbulence. Here, componentality refers to informa-

tion about the directions in which turbulent fluctuations are most

energetic, while dimensionality refers to information about the align-

ment and extent of the coherent structures. One has to distinguish

between the turbulence componentality and dimensionality because

they are two distinct aspects of turbulence anisotropy that affect the

dynamics of the turbulence in different ways (Kassinos et al., 2001).

The structure of the turbulence field, i.e. the morphology of the large

energy-containing eddies, can be characterized through a set of one-

point turbulence structure tensors. Here, we summarize the key fea-

tures of these tensors, but more details can be found in several works,

such as (Kassinos et al., 2000; Reynolds and Kassinos, 1995; Stylianou

et al., 2015).

The one-point structure tensors are defined through the fluctu-

ating stream function vector ψ ′
i
, which is related to the fluctuating

velocity u′
i

and vorticity ω′
i

through the expressions,

u′
i = εi jkψ

′
k, j, ψ ′

i,i = 0, ψ ′
i,nn = −ω′

i . (5)

The Reynolds stress tensor Rij, also called componentality ten-

sor in the terminology of Kassinos et al. (2001), describes the spa-

tial orientation of the velocity fluctuations, i.e. it allows one to

know in which direction the velocity fluctuations are most energetic.

The componentality tensor is related to the stream function vector

through the identity

Ri j = u′
i
u′

j
= εistε jpqψ

′
t,sψ

′
q,p, ri j = Ri j/Rqq = Ri j/(2κ), (6)

where κ is the turbulent kinetic energy. Applying isotropic tensor

identities (Mahoney, 1985) to Eq. (6) leads to a constitutive equation,

which in the case of homogeneous turbulence reduces to

Ri j + Di j + Fi j = Rkkδi j. (7)

Eq. (7) leads to the definitions of the one-point structure tensors,

Componentality Ri j = u′
i
u′

j
, ri j = Ri j/Rkk, r̃i j = ri j − δi j/3,

(8a)

Dimensionality Di j =ψ ′
k,i

ψ ′
k, j

, di j = Di j/Dkk, d̃i j = di j − δi j/3,

(8b)
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