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a b s t r a c t

Electro-thermo-hydrodynamic (ETHD) flow induced by the simultaneous Coulomb and buoyancy forces
in a dielectric medium is studied using the lattice Boltzmann method. Nonautonomous charge injection
from a high temperature inner elliptical electrode to two cold parallel-plate electrodes is considered.
Systematical simulations are conducted for ETHD problems with different injection models and non-
dimensional parameters, including electric Rayleigh number T, Rayleigh number Ra and the ellipticity
e of the elliptical electrode. It is found that the charge transport process, flow instability and heat transfer
enhancement are significant affected by nonautonomous injection, especially in the Coulomb force dom-
inant flow regime and the large ellipticity cases. Quantitatively, for dielectric liquid M = 10, e = 2 and Pr =
10 under strong injection C = 10, when compared to the autonomous charge injection assumption,
nonautonomous injection shown an average of 16.4% increases in the mean Nusselt number within
the range of driving parameters explored (103 � Ra � 107, 300 � T � 1800).

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Electro-thermo-hydrodynamic (ETHD) flow induced by the
simultaneous action of a unipolar injection of ions and a thermal
gradient in dielectric liquids is the foundation of applications
related to the transfer of heat, momentum and charge in these liq-
uids [1,2]. In recent years, the ETHD problem has been extensively
studied and recognized as a high energy efficiency technology in
thermo-fluid systems, such as ETHD convection system [3], ETHD
boiling and condensing systems [4], ETHD drying and evaporating
systems [5], and ETHD solar energy systems [6]. As reported in
recent reviews [1,7], most studies in ETHD are experimental, while
numerical works are limited to simple physical models or simple
geometries due to the complex mathematical model and the strong
nonlinear coupled equations [2]. To gain fundamental insights into
many poorly understood ETHD phenomena, more numerical stud-
ies should be devoted to ETHD.

The numerical methods for ETHD problems can be mainly clas-
sified into two categories. The first kind of methods are based on
the conventional partial differential equations (PDEs), such as the
finite difference method (FDM) [8], the finite element method
(FEM) [9], and the finite volume method (FVM) [3,10]. This kind

of methods has been successfully applied to most of ETHD prob-
lems both in two parallel-planes electrodes model [3] and annulus
configuration [11,12]. However, due to the strongly convection-
dominant feature of charge conservation equation, PDEs based
methods need additional techniques to obtain accurate solution
without unphysical oscillation. Some examples include the
particle-in-cell scheme [13], the flux-corrected transport scheme
[14], the total variation diminishing or high-resolution scheme
[15]. The second kind is the particles based methods, such as the
dissipative particle dynamic (DPD) [16] and the lattice Boltzmann
method (LBM) [17–19]. Owing to the mesoscopic origin, this kind
of methods can naturally track the transient evolution of fluid field,
but their general drawback is time consuming. Among them, the
recently developed LBM has a relatively high computing efficiency
owing to its simple collision-streaming calculation process and
intrinsic parallelism, even compared to macroscopic PDE-based
methods. Besides, the LBM is proved to have second order accuracy
[18] and strong flexibility for complex geometries [20].

Most of previous numerical works on electro-convective or
electro-thermo-convective flows concerned the parallel-plane
electrode configuration, this configuration has been widely used
for the validation of theoretical model and numerical code
[21–23]. However, curved or sharp electrodes which leads to local
high electric fields and EHD plume are of great interest in applica-
tions such as ETHD enhanced heat transfer [7]. In that situation,
the autonomous injection assumption with constant injection
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strength q = C is inconsistent with real situations. Instead, a nonau-
tonomous injection model with the charge density linked to the
local electric field q = f(E) at curved electrode surface should be
adopted. Several nonautonomous injection models have been used
for pure electro-convective flows by different authors [2,24,25] and
in the excellent review [26]. Three representative cases are the
linear injection model (LIM), the exponential injection model
(EIM) and the injection law model (ILM), among them, the ILM
expressed as qi = qi0/bK1(b) (K1 is the modified Bessel function of
second kind and order one) is reported to be the most accurate
one [2].

In this work, the configuration of an elliptical electrode between
two parallel plates is used. The key motivation for our choice of the
elliptical shape lies in the fact that the more curved elliptical sur-
face corresponds to stronger charge injection strength and nonau-
tonomous injection effects, which may lead to stronger flow field
and the consequent increase of heat transfer rate. Although few
published works in ETHD use elliptical electrodes, the related con-
figurations containing circular cylinders have been extensively
used [10,12,20]. By the forging technique, the cylindrical electrodes
in these cases can be easily manufactured into the elliptical shape.
Besides, some applications about the periodically arranged ellipti-
cal electrodes with pure EHD problems have been found, for exam-
ple, elliptical metal posts in induced-charge electro-osmosis (ICEO)
problem [27] and elliptical disc electrodes in electrochemical [28].
And in thermal convection problems, such as, the bank of tubes
heat transfer systems [29], solar energy systems [30], and electron-
ics cooling [31], and so on.

Therefore, ETHD flow under nonautonomous charge injection is
simulated by solving the fully coupled governing equations using
the lattice Boltzmann method. The main purpose of the present
investigation is threefold: (i) to numerically investigate the effects
of different injection models on heat transfer, fluid flow and charge
density distribution (ii) to explain the formation of ETHD plume
and to determine the flow transition from steady to unsteady
states; (iii) to investigate the effect of curvature of elliptical elec-
trode on heat transfer enhancement under nonautonomous
injection.

2. Physical model and macroscopic governing equations

Consider periodically arranged elliptical cylinders between two
parallel plates, and a single periodic unit cell of two dimensions
(2D) is used for simulation as illustrated in Fig. 1. The aspect ratio
of the configuration is A = L/H = 0.5, where H is the distance

between the two plates and L is the length of the solid wall. The
inner elliptical electrode with the major and minor axes being b
and a (define e = b/a as the ellipticity, a/H = 0.1) is kept at a con-
stant electric potential /0 (>0) and high temperature hh. However,
high curvature at the tip of ellipse provides a rapidly increasing of
the local electric field Ec which leads to strong nonuniform distri-
bution of local charge density distribution q according to the law
q = f(Ec). The free charges are then convected by the liquid and
drifts relative to the flow motion with a velocity proportional to
the electric field, until they reach the collecting electrode which
is grounded /1 = 0 with a low temperature hc. In the process, a Cou-
lomb force caused by electric potential difference D/ ¼ /0 � /1

and a thermal buoyancy force due to temperature difference
Dh ¼ hh � hc simultaneously act on fluid and formulate the ETHD
convection.

2.1. Governing equations and the unified lattice Boltzmann model

The mathematical equation of ETHD problems includes the
mechanical equations, the electrical equations and the energy
equation, a total number of six fully coupled nonlinear equations.
Considering an incompressible, Newtonian and linear isotropic
fluid under the Boussinesq approximation, the complete set of
macroscopic governing equations are given as [32]
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where u = [u, v] and E = [Ex, Ey] are fluid velocity field and electric
field, respectively. The variables q, p̂, /, q and h denote the fluid den-
sity, a modified pressure [33], electric potential, charge density and
temperature; The symbols l, b, e, K, D, v stand for the dynamic vis-
cosity, the coefficient of volumetric expansion, electrical permittiv-
ity, ionic mobility, charge-diffusion coefficient and thermal
diffusivity. The body force fb in Eq. (1g) consists of a thermal buoy-
ancy force ft and an electrical force fe [33]. The ionic mobility K and
electrical permittivity e are assumed to vary linearly with tempera-
ture. Then, we have the equations of state [34]

K ¼ K0½1þ k1ðh� href Þ�; e ¼ e0½1þ e1ðh� href Þ�
in which, the subscript ‘‘0” denotes values at the reference temper-
ature, k1 and e1 are derivatives with respect to temperature. Consid-
ering the ETHD phenomena are affected by many factors, in this
work we mainly focused on the nonautonomous injection effect
and the condition k1 = 0, e1 = 0 is used. Therefore, the last two terms
in Eq. (1g), the dielectric force and the electrostrictive force respec-
tively, can be neglected. Moreover, magnetic phenomena and the
Joule effect are disregarded here.
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Fig. 1. Sketches of a periodic unit of periodically arranged elliptical cylinders
between two parallel plates.
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