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a b s t r a c t

Our focus is space-filling networks to deliver and distribute flows. Here we report an analytical analysis of
optimal branching networks of tubes for both fluid flow and heat transfer. This attempt results in the
structural features of these networks, mainly on relationships between the size of the parent and daugh-
ter tubes at bifurcations, and the branching angles of the bifurcations. The process of construction of
these networks is described for both laminar and turbulent flow, Newtonian and power-law fluids, and
constant and pulsatile flows. The extended design rules obtained in this study are compared with the
optimal branching rules available in the literature. Structural features of bifurcating tubes under different
flow regimes are also analyzed.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Natural and engineering flow systems rely on tree-shaped net-
works for an efficient delivery of fluid and mass, and heat transfer
function. The optimal branching of tree flow networks has been the
subject of numerous studies owing to its importance in under-
standing the natural and manmade systems. Cardiovascular and
respiratory systems rely on tree network of vessels and airways
to perform their function. Besides bringing blood close to cells so
that the exchange of nutrients and wastes, cardiovascular system
serves an additional purpose of heat exchanger [1]. Engineering
networks for fluid flow and heat transfer function thrive in several
systems such as cooling systems [2–6].

We learned from Nature that the arrangement of vessels in
branching systems is of functional significance. Studies [7,8] show
that when the parent tube branches into daughter tubes, the rule is
that the cube of the diameter of the parental tube equals the sum
of the cubes of the diameters of the daughter tubes. This rule min-
imizes the work required to enable fluid flow, and is usually ter-
med as Hess-Murray law. It is worthwhile to mention that, the
application of other optimization principles results in the same
law [6–16]. Murray [9] also applied this rule to derive the equa-
tions for the optimum branching angles of vascular system. By

considering the minimum work required to drive a laminar flow,
Murray found that the symmetric bifurcation angle is about 75�.

Hess-Murray’s rule was derived using biological considerations,
and it is of great value in the description of vessels of vascular tree,
as well as the airways, but it can be also applied to non-living net-
works [2–6,17]. Following the derivation of this law by Murray and
other authors [8–15,18], it is clear that the Hess-Murray rule is
valid only on the assumption of a Hagen-Poiseuille flow, of a New-
tonian fluid under a steady constant pressure gradient, through a
tube of rigid and non-permeable walls. Throughout the years, this
rule has been extended to include, namely, non-Newtonian fluids
of power law type [10,11], and turbulent flow in rough tubes
[12]. For power law fluids, the optimal ratio for diameter increases
with the fluid behavior index. In the fully-rough and fully-
turbulent regimes, the ratio of parent and daughter tubes’ diame-
ters is equal to a homothetic factor of 2�3/7. Other studies extended
Hess-Murray’s rule to account for tubes with permeable walls
[13,14], and another researches predicted the optimum ratio
between consecutive lengths of bifurcating tubes [12,15]. In fact,
there are several examples that may serve to confirm Hess-
Murray’s rule and extensions (see for example [6,16–20]).

Filling a space with an efficient branching network is not irrel-
evant, when the flow system must reliably distribute fluid, materi-
als or other, at each level. The efficiency in material and energy use,
rendered in the minimization of work, power or resistances, shapes
the structure of these networks. While authors have explored the
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relationships between the size and position of the parent and
daughter tubes at the bifurcation, under isothermal or quasi-
isothermal systems, branching is also useful for the design of engi-
neering systems, such as cooling systems [2,6]. At each level, the
design of parent and daughter tubes may be influenced by heat
effects, and motivate an investigation.

This paper is focused on space-filling networks to optimal deliv-
ery of fluid and heat. Here, we present a theoretical foundation for
incorporating heat effect in the fluid flow framework to understand
the connection between individual tubes in dichotomous systems.
As a result, the formulation presented here may contribute to
establish design rules to improve engineered tree flow networks,
but also to better understand the diversity of network morpholo-
gies observed in some natural systems.

2. Theory

Consider a flow of a fluid in a straight cylindrical tube subject to
a constant wall heat flux. In addition to head loss due to friction in
the tube, heat increases the temperature resulting in an accelera-
tion of the fluid. The pressure drop through the tube is

dP
dx

¼ fDW
D

qf

2
u2

� �
þ u2 dqf

dx
ð1Þ

where P is the pressure, D is the diameter, qf is the fluid density, fDW
is the Darcy-Weisbach friction factor and u is the fluid velocity.
Notice that the right-hand terms of Eq. (1) represent the friction
pressure drop and the acceleration pressure drop, respectively.
The temperature-induced density gradient is given by

dqf

dx
¼ aTqf

dT
dx

ð2Þ

and the temperature gradient and the heat flow are related by

Q ¼ qfuDAsc

4
ðcp � u2aTÞdTdx ð3Þ

where Asc is the surface area of the side of the tube, and aT is much
less than 1 for liquid and gases (��T�1 for nearly ideal gases) [21].
Therefore, it may be assumed that cp-u2aT � cp, and substituting
Eqs. (2) and (3) into Eq. (1) results in

dP
dx

¼ 16ðfDW þ facÞ
p2D5

qf

2
/2

� �
ð4Þ

with

fac ¼ 2paTDQ
qf Lcp/

ð5Þ

Here / is the is the volumetric flow rate, and the Darcy-
Weisbach friction factor may be calculated by [22,23]

fDW ¼ cDW
RenD

ð6Þ

with

cDW ¼ 64; n ¼ 1 ReD 6 2100 ðlaminar flowÞ ð7:1Þ

cDW ¼ 0:316; n ¼ 1=4 2100 < ReD

6 2� 104 ðfully� smooth tubesÞ ð7:2Þ

cDW ¼ 1
1:14� 2 logðeÞ
� �2

; n ¼ 0 0:00004 < e

< 0:05;6� 103 < ReD < 107ðfully� rough tubesÞ ð7:3Þ
where ReD is the Reynolds number, and e is the relative roughness
of the tube.

Consider a flow system composed by a tube that splits into two
tubes (Fig. 1). The analogy between fluid flow and current is intu-
itive and can be directly applied. The general case of resistance to
current is the impedance because covers the cases of phase shift. In
fact, pure resistance (current in-phase with the applied potential)
is a measure of impedance. For a tube that branches off into two
tubes (Fig. 1), analogous to resistors, the impedance of daughter
tubes are in parallel, but the equivalent impedance of daughter
tubes (given by the reciprocal of the sum of the reciprocals of the
individual impedances) and the impedance of parent tube are in
series.

Let the impedance at the junction of parent and daughter tubes
small when compared with the impedance of parent and daughter
tubes. For fluid flow, this means that the svelteness factor defined
by the ratio of the external to the internal length scales is higher
than the square root of 10 [24]. Therefore, the impedance Z of a
single tube is given by

DP
/

¼ Z/1�n ð8Þ

and the total impedance of system formed by parent and daughter
tubes becomes

Ztotal/
1�n ¼ Zp/

1�n þ Zd1/
1�n
d1 Zd2/

1�n
d2

Zd1/
1�n
d1 þ Zd2/

1�n
d2

ð9Þ

where the subscripts p and d mean parent and daughters tubes,
respectively.

For symmetrical branching tubes Zd1 = Zd2, /d1 = /d2 and
/ = 2/d, and Eq. (9) reduces to

Ztotal ¼ Zp þ Zd

2
/d

/

� �1�n

¼ Zp þ Zd

22�n ð10Þ

where n is 1 for laminar flow (Eq. (7.1)), 1/4 for fully-smooth turbu-
lent flow (Eq. (7.2)), and 0 for fully-rough turbulent flow (Eq. (7.3)).

2.1. Optimal branching size of tubes under laminar flow and with heat
flow

2.1.1. Constant Newtonian fluid flow
For a Newtonian flow in a tube, the Reynolds number is given

by 4qf//pDl, where l is the fluid viscosity. The impedance Z of a
single tube can be obtained substituting Eqs. (5), (6) and (7.1) into
Eq. (4), which results in

DP
/

¼ Z ¼ 16
p

L
D4 8lþ aTQ

cpL

� �
ð11Þ

For the branching system of Fig. 1, combining Eqs. (10) and (11)
one obtains

Ztotal ¼ 16
p

Lp
D4

p

8lþ aTQ
cpLp

� �
þ 1
2
16
p

Ld
D4

d

8lþ aTQ
cpLd

� �
ð12Þ

Fig. 1. Schematic representation of a single tube that splits into two tubes.

A.F. Miguel / International Journal of Heat and Mass Transfer 122 (2018) 204–211 205



Download English Version:

https://daneshyari.com/en/article/7054349

Download Persian Version:

https://daneshyari.com/article/7054349

Daneshyari.com

https://daneshyari.com/en/article/7054349
https://daneshyari.com/article/7054349
https://daneshyari.com

