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a b s t r a c t

In this paper, a new and simple boundary-domain integral equation is presented to solve nonlinear heat
conduction problems with temperature-dependent conductivity of materials. The boundary-domain
integral equation is formulated for nonlinear heat conduction problems by using the fundamental solu-
tions for the corresponding linear heat conduction problems, which results in the appearance of a domain
integral due to the variation of the heat conductivity with temperature. The arising domain integral is
converted into an equivalent boundary integral using the radial integration method (RIM) by expressing
the temperature as a series of basis functions. This treatment results in a pure boundary element algo-
rithm and requires no internal cells to evaluate the domain integral. To solve the final system of algebraic
equations formed by discretizing the boundary of the problem into boundary elements, the Newton–
Raphson iterative method is applied. Numerical examples are presented to demonstrate the accuracy
and efficiency of the present method.
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1. Introduction

The conventional boundary integral equations dealing with
non-homogeneous [1,2] and non-linear [3,4] heat conduction
problems include domain integrals. To evaluate these domain inte-
grals, the computational region needs to be discretized into inter-

nal cells, which makes BEM lose its distinct advantage of only
boundary discretization. To circumvent this deficiency, some
methods of transforming domain integrals into equivalent bound-
ary integrals are proposed and have been frequently used in BEM.
In these methods, the dual reciprocity method (DRM) developed by
Brebbia [5,6] is extensively utilized. However, DRM requires partic-
ular solutions to the basis functions, which restricts its application
to the complicated problems. Recently, a new transformation
method, the radial integration method (RIM), has been developed
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by Gao [7,8], which not only can transform any complicated
domain integrals to the boundary in a unified way without using
particular solutions, but also can remove various singularities
appearing in the domain integrals. Due to the advantages of RIM
that particular solutions are not required and several domain inte-
grals appearing in the same integral equation can be dealt with
simultaneously, RIM-based boundary element methods have won
a good favour from many BEM researchers [9–12] in recent years.
However, although the radial integration boundary element
method (RIBEM) is very flexible to deal with the general non-
linear elastic problems [13] and non-homogeneous problems
[14–20], there is no report to solve nonlinear heat conduction
problems with temperature -dependent conductivity using RIBEM.

In this paper, a new type of boundary-domain integral equation
for nonlinear heat conduction problems is developed based on the
use of the fundamental solution for linear heat conduction prob-
lems for the first time. The resulted domain integrals are trans-
formed to the boundary with the use of RIM by expressing the
temperature in the integrand as a series of basis functions. New-
ton–Raphson iterative method is applied to solve the final system
of algebraic equations. Three numerical examples are given to
demonstrate the accuracy and efficiency of the present method.

2. Boundary-domain integral equations for heat conduction
problems with temperature dependent conductivity

The governing equation for steady state heat conduction prob-
lems in isotropic media with temperature dependent thermal con-
ductivity can be expressed as

@

@xi
kðTðxÞÞ @TðxÞ

@xi

� �
¼ 0 ð1Þ

where xi is the i-th component of the spatial coordinates at point x,
TðxÞ the temperature, kðTðxÞÞ the temperature dependent thermal
conductivity at point x. The repeated subscript i represents the
summation through its range which is 2 for 2D and 3 for 3D
problems.

To derive the boundary integral equation, a weight function
Gðx; yÞ is introduced to Eq. (1) and the following domain integral
can be written:Z
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where X denotes the domain of the problem of interest.
Using Gauss’s divergence theorem, the domain integral can be
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where C is the boundary of the domain X and ni is the i-th compo-
nent of outward normal vector n to the boundary C.

If the weight function Gðx; yÞ is chosen as the Green’s function
which satisfies the following equation:Z
X
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@xi

@Gðx; yÞ
@xi

� �
dXðxÞ ¼ �kðTðyÞÞTðyÞ ð4Þ

then by substituting this relation into Eq. (3) and the result into Eq.
(2), it follows that
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where qðxÞ is the heat flux:

qðxÞ ¼ �kðTðxÞÞ @TðxÞ
@xi

niðxÞ ð6Þ

The Green’s function Gðx; yÞ satisfying Eq. (4) is [7]

Gðx; yÞ ¼
1
2p ln 1

r

� �
for 2D problems

1
4pr for 3D problems

(
ð7Þ

where r is the distance between the source point y and the field
point x.

Eq. (5) is the boundary integral equation for the steady state
heat conduction problems with temperature dependent thermal
conductivity. In contrast to the conventional linear BEM formula-
tions [1], Eq. (5) includes a domain integral. To evaluate the
domain integral, the computational region needs to be discretized
into internal cells, which makes BEM lose its distinct advantage of
only boundary discretization. To get rid of the cell discretization,
the domain integral in Eq. (5) will be transformed into equivalent
boundary integral by using RIM in the following section.

3. Transformation of domain integral to the boundary by RIM

In this section, the radial integration method is used to trans-
form the domain integral appearing in Eq. (5) into boundary
integral.

In terms of RIM [7,8], a domain integral with the integrand
f ðx; yÞ can be transformed into an equivalent boundary integral
as follows:Z
X
f ðx; yÞdXðxÞ ¼

Z
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1
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where rðz; yÞ denotes the distance between the source point y and
the boundary point z, and Fðz; yÞ is determined by the following
redial integral:

Fðz; yÞ ¼
Z rðz;yÞ

0
f ðx; yÞradr ð9Þ

Fig. 1 shows the relationship among the source point y, field point x,
boundary point z and the distance r.

Fig. 1. Relationship among points x, y, z and distances.

1146 K. Yang et al. / International Journal of Heat and Mass Transfer 104 (2017) 1145–1151



Download	English	Version:

https://daneshyari.com/en/article/7054869

Download	Persian	Version:

https://daneshyari.com/article/7054869

Daneshyari.com

https://daneshyari.com/en/article/7054869
https://daneshyari.com/article/7054869
https://daneshyari.com/

