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a b s t r a c t 

In this paper, we present a phase-field method for Rayleigh instability on a fibre. Unlike a liquid col- 

umn, the evolutionary dynamics of a liquid layer on a fibre depends on the boundary condition at the 

solid-liquid interface. We use a Navier–Stokes–Cahn–Hilliard system to model axisymmetric immiscible 

and incompressible two-phase flow with surface tension on a fibre. We solve the Navier–Stokes equation 

using a projection method and the Cahn–Hilliard equation using a nonlinearly stable splitting method. 

We present computational experiments with various thicknesses of liquid thread and fibre. The numer- 

ical results indicate that the size of the satellite droplet decreases as the thicknesses of the thread and 

fibre increase. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The coating problem of a cylindrical fibre with a liquid film has 

been intensively studied because of its relation with technological 

and industrial processes, i.e., the coating of conducting cables with 

isolating films ( González et al., 2010 ). However, compared to a lot 

of literature on the simulations of the break-up of a liquid thread 

under the Rayleigh instability (RI) ( Chakrabarti et al., 2017; Gopan 

and Sarith, 2014; Joshi et al., 2016; Vega et al., 2010; Yan et al., 

2015 ) and references therein, there are only few numerical works 

on the RI on a fibre ( González et al., 2010; Haefner et al., 2015; 

Mead-Hunter et al., 2012 ). Fig. 1 shows optical micrographs illus- 

trating the temporal evolutions of the Plateau–Rayleigh instability 

for a liquid polystyrene film on a glass fibre ( Haefner et al., 2015 ). 

Using a lubrication approximation, the authors in 

Haefner et al. (2015) obtained a governing equation for the 

one-dimensional axisymmetric surface profile over time and com- 

pared with various experiments. In particular, they reported on the 

RI dynamics with two different boundary conditions on the liquid 

and fibre. The breakup of a liquid film coating a fiber into an array 

of droplets was simulated using a three-dimensional volume-of- 

fluid method by the authors in Mead-Hunter et al. (2012) . They 

also compared the numerical results with experimental observa- 

tions and existing theory. The instability of a liquid film coating a 

thin cylindrical fibre was investigated numerically and experimen- 

tally by González et al. (2010) . They reported experimental results 

such as growth rates and dominant wavelengths of the interface. 
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They also presented direct numerical simulations and compared 

with the experimental data. 

In this work, we will use a phase-field method for the Rayleigh 

instability on a fibre and investigate the effects of the thickness 

of the liquid film and the fibre on the evolution dynamics. The 

phase-field method is popular in modeling two-phase fluid flows. 

For example, Bai et al. (2017) used a 3D phase-field model to 

simulate the droplet formation process in a flow-focusing device. 

There are other numerical methods for multiphase fluid flows such 

as the level-set method ( Rodríguez, 2017 ) and the volume-of-fluid 

method ( Müller et al., 2016 ). 

The outline of the paper is as follows. The phase-field model 

in cylindrical coordinates is presented in Section 2 . The numerical 

solution is given in Section 3 . The proposed numerical schemes are 

tested in Section 4 . Finally, conclusions are derived in Section 5 . 

2. Axisymmetric Navier–Stokes–Cahn–Hilliard system 

We consider the two-phase fluid consisting of two components, 

fluid 1 and fluid 2, on a solid fibre. We denote by φ the compo- 

sition difference of the mixture of two fluids. The phase-field φ is 

a normalized concentration and its value is equal to +1 and −1 

when the two phases are at mutual equilibrium. In this study, we 

focus on density matched case. The axisymmetric Navier–Stokes–

Cahn–Hilliard system ( Kim, 2005b ) is 

∇ · u = 0 , (1) 

ρ(u t + u · ∇u ) = −∇p + ∇ · [ η(φ)(∇u + ∇u 

T )] + SF (φ) , (2) 

φt + ∇ · (φu ) = M�μ, (3) 
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Fig. 1. Plateau–Rayleigh instability for a liquid polystyrene film on a glass fibre. 

Adapted from Haefner et al. (2015) with permission from Nature Publishing Group. 

μ = αφ3 − βφ − κ�φ, (4) 

where u the velocity, ρ is the density, p the pressure, and η(φ) = 

η1 (1 + φ) / 2 + η2 (1 − φ) / 2 is the variable viscosity, where η1 and 

η2 are viscosity coefficients of fluid 1 and 2, respectively. The sur- 

face tension force ( Kim, 2005a ) is 

SF (φ) = −3 

√ 

2 σε

4 

∇ ·
( ∇φ

|∇φ| 
)

|∇ φ|∇ φ, (5) 

where σ is the interfacial tension coefficient and ε is the 

small positive parameter related to interfacial transition thick- 

ness. Other thermodynamically consistent surface tension force, 

i.e., the Korteweg force can be found in Kim (2005a) and 

Lamorgese et al. (2017) , M is the positive mobility, and α, β , κ
are constant. μ is the generalized (i.e., including its non-local part) 

chemical potential difference near the critical point. Eqs. (1) –(5) 

couple each other through concentration-dependent viscosity and 

surface tension force, and the advection for the phase-field φ. If 

we nondimensionalize the governing Eqs. (1) –(4) , then we have 

∇ · u = 0 , (6) 

u t + u · ∇u = −∇p + 

1 

Re 
∇ · [ η(φ)(∇u + ∇u 

T )] + 

1 

W e 
SF (φ) , (7) 

φt + ∇ · (φu ) = 

1 

P e 
�μ, (8) 

μ = φ3 − φ − ε2 �φ, (9) 

where we set α, β = 1 , κ = ε2 and the Reynolds, Weber, and Peclet 

numbers are given by Re = ρc U c L c /ηc , W e = ρc L c U 

2 
c /σc , and Pe = 

U c L c / (M c μc ) using characteristic values, respectively. More details 

about the nondimensionalization can be found in Kim (2005b) and 

Lee et al. (2011) . Because we are interested in axisymmetric 

Navier–Stokes–Cahn–Hilliard system for the cylindrical viscous liq- 

uid thread on a solid fibre, we rewrite Eqs. (6) –(9) in axisymmetric 

form: 

1 

r 
(ru ) r + w z = 0 , (10) 

u t + uu r + wu z = −p r + 

SF r 

W e 

+ 

1 

Re 

(
1 

r 
(r(2 ηu r )) r + (η(w r + u z )) z − 2 ηu 

r 2 

)
, (11) 

Fig. 2. Schematic of a perturbed cylindrical thread of viscous fluid 1 coating a fibre 

and embedded in another viscous fluid 2. 

Fig. 3. Temporal evolution of a thread coating a fibre. 

w t + uw r + ww z = −p z + 

SF z 

W e 

+ 

1 

Re 

(
1 

r 
(rη(w r + u z )) r + (2 ηw z ) z 

)
, (12) 

φt + 

1 

r 
(rφu ) r + (φw ) z = 

1 

P e 

(
1 

r 
(rμr ) r + μzz 

)
, (13) 

μ = φ3 − φ − ε2 
(

1 

r 
(rφr ) r + φzz 

)
, (14) 

where u = u (r, z) and w = w (r, z) are the radial and the axial ve- 

locities, respectively. The subscript index is the differentiation with 

respect to that index. 

3. Numerical solution 

Let us consider a two-dimensional axisymmetric computational 

domain � = { (r, z) : R 1 < r < R 2 , 0 < z < H} . We discretize the do- 

main with a uniform mesh spacing h . The center of each cell is 

positioned at (r i , z k ) = (R 1 + (i − 0 . 5) h, (k − 0 . 5) h ) for i = 1 , · · · , N r 

and k = 1 , · · · , N z , where N r and N z are the numbers of cells in 

r and z -directions, respectively. The cell vertices are located at 

(r 
i + 1 

2 
, z 

k + 1 
2 
) = (R 1 + ih, kh ) . Given u 

n = (u n , w 

n ) and φn , we want 

to find u 

n +1 = (u n +1 , w 

n +1 ) and p n +1 which solve the following 

discrete Eqs. (10) –(12) : 

1 

r 
(ru 

n +1 ) r + w 

n +1 
z = 0 , (15) 
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