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a b s t r a c t 

The velocity of Taylor bubbles in inclined pipes is reduced if a lubricating liquid film between the bubble 

and the pipe wall is not present. An analytical model predicting the gravity-driven drainage of the lubri- 

cating film is presented in this article. The model is then used to establish a criterion for film breakup: 

if t̄ bubble = t bubble /τ < 0 . 01 the thin film would not break up, where t bubble is the bubble’s passage time, 

and τ is the characteristic film drainage time based on the fluid properties, pipe geometry, and critical 

film thickness. The model is validated experimentally with Taylor bubbles in inclined pipes (5 ° to 90 °, 
the latter being vertical) with stagnant liquids (ethanol, methanol, and mixtures of deionized water and 

methanol). 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Flow of Taylor bubbles, also known as slug flow, is a common 

occurrence in wells, riser pipes and pipelines of crude oil and nat- 

ural gas developments, as well as boiling-water nuclear reactors. 

Current predictive methods for this flow pattern rely on the so- 

called mechanistic two-fluid model, where the flow is represented 

as a series of liquid slugs and Taylor bubbles ( Taitel and Dukler, 

1976; Orell and Rembrand, 1986; Ansari et al., 1994; Petalas and 

Aziz, 20 0 0 ). For the case of vertical pipes, an axisymmetric lubri- 

cating film with a constant thickness surrounds the Taylor bubble. 

For stagnant liquid, the range of the non–dimensional film thick- 

ness, h̄ = h/R, where h is the film thickness and R is the pipe ra- 

dius, is approximately h̄ ∈ [0 . 08 , 0 . 33] ( Llewellin et al., 2012 ). As 

the pipe inclination increases, the Taylor bubble approaches the 

pipe wall and the lubricating film becomes significantly thinner 

and non-axisymmetric; moreover, the thickness of the film de- 

creases along the Taylor bubble due to azimuthal gravity-driven 

drainage (see Fig. 1 ). If the film breaks up, the surface tension force 

at the triple contact line reduces the velocity of the bubble signif- 

icantly ( Behafarid et al., 2015 ). 

The existence of this lubricating film and its breakup have 

received some attention in the literature. Maneri and Zuber 

(1974) and Hien and Fabre (2004a ) studied the velocity of plane 
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bubbles in two-dimensional ducts experimentally and numerically, 

respectively, using deionized (DI) water and methanol. They ob- 

served three different bubble shape regimes depending on the duct 

inclination: (i) the bubble touching the upper wall for θ ≤ 60 °, 
(ii) a stable lubricating film where the bubble does not touch the 

duct for θ ≥ 80 °, and (iii) an unstable transition region in be- 

tween. Al-Safran et al. (2013) observed a stable thin film at the top 

of the horizontal pipe in their slug flow experiments with high- 

viscosity fluids. However, these results are valid for the limited 

set of fluid properties and flow conditions explored in those stud- 

ies. The drainage of a vertical film due to gravity was analyzed by 

Mysels et al. (1959) ; here we extend the analysis to the situation 

where the component of gravity in the direction of the flow varies 

continuously, and surface tension and intermolecular forces may 

affect the dynamics ( Oron et al., 1997 ). 

In this article, a drainage model and breakup criterion for the 

lubricating film of Taylor bubbles in slug flow in inclined round 

pipes is presented. Such criterion can be used to determine under 

which conditions the lubricating film is present, which is a key in- 

put for both numerical simulations ( Hien and Fabre, 2004b; Taha 

and Cui, 2006; Ben-Mansour et al., 2010; Lizarraga-Garcia et al., 

2015b ) and mechanistic modeling of slug flow in order to deter- 

mine correctly the Taylor bubble velocity and pressure drop. Also, 

it can be applied in flow assurance studies of high-viscosity oil slug 

flows, a critical aspect in oil and gas systems: corrosion of the pipe 

material causes its blockage, and antioxidants are added to the liq- 

uid to avoid it. The prediction of a liquid film above the Taylor 

bubble so that antioxidants touch the entire pipe is thus key to 

guarantee their safety. 
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Fig. 1. Taylor bubble and lubricating liquid film inside a round pipe with a θ inclination angle with respect to the horizontal (a), cross-sectional view (b), and coordinates 

used for the film drainage analysis (c). Not drawn to scale. 

2. Development of the thin film drainage and breakup model 

2.1. Film drainage 

Fig. 1 shows the geometry and frame of reference chosen for 

the analysis of the lubricating liquid film drainage. Let u, v , and 

w denote the liquid film velocity in the azimuthal, radial, and 

longitudinal direction, respectively. Use of Cartesian coordinates is 

justified since h / R � 1. Thus, the Navier–Stokes equation in the x 

direction is 

ρ
∂u 

∂t 
+ ρu 

∂u 

∂x 
+ ρv 

∂u 

∂y 
+ ρw 

∂u 

∂z 
= −∂ p 

∂x 

+ μ

(
∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 
+ 

∂ 2 u 

∂z 2 

)
+ F x (φ) , (1) 

where μ is the liquid viscosity, ρ is the liquid density, p is the 

pressure, F x (φ) = ρg cos (θ ) sin (φ) where g is the gravity acceler- 

ation, and φ is the azimuthal angle with respect to the vertical. 

Eq. (1) can be simplified using the lubrication approximation, by 

virtue of which various terms can be neglected: 
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Note that Eq. (2c) applies equally to the other two inertia terms 

of the equation after the continuity equation. Also, the pressure 

term can be neglected, 

∂ p 

∂x 
≈ 0 , (3) 

considering that the pressure differences inside the film due to 

gravity and surface tension are negligible, and the pressure inside 

the bubble is constant. Furthermore, the intermolecular forces are 

not included in Eq. (1) . The validity of these approximations is ver- 

ified in Appendix A . Thus, the previous Navier–Stokes Eq. (1) is 

simplified and, after imposing the no -slip at the wall and shear- 

stress-free at the film surface boundary conditions, the azimuthal 

film velocity profile is found: 

u (φ, y ) = 

F x (φ) 

μ

(
hy − y 2 

2 

)
, (4) 

a parabolic profile whose approximate shape is depicted in Fig. 1 c. 

Similarly, the Navier–Stokes equation in the z direction is 

ρ
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)
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where F z = ρg sin (θ ) . Note that v is much smaller than the other 

two velocity terms in this lubrication approximation. Following an 

analogous procedure as in the x direction, Eq. (5) is simplified and 

we obtain the longitudinal film velocity profile, 

w (φ, y ) = 

F z 

μ

(
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)
. (6) 

In order to obtain the governing PDE for the film drainage, the 

continuity equation is used: 
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where Q 

′ 
x and Q 

′ 
z are the volumetric flow per unit length in the 

x and z direction, respectively. Using Eqs. (4) and (6) , and recog- 

nizing that x = φ · R, the second and third terms of the LHS of the 

previous equation can be developed: 
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Noting that the three RHS terms of the previous equations are 

positive, and ( ∂ h / ∂ z )/( ∂ h / ∂ x ) � 1 by scaling analysis it can be con- 

cluded that 

∂Q 
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∂z 
� ∂Q 

′ 
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∂x 
, (9) 

and therefore the film drainage PDE becomes 

∂h 

∂t 
+ 

∂ 
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(
ρg cos (θ ) h 

3 

3 μR 

sin ( φ) 

)
= 0 . (10) 

The initial and boundary conditions are 

h (φ, 0) = h i (φ) , (11a) 

∂h (0 , t) 

∂φ
= 0 , (11b) 

respectively, where Eq. (11b) comes from the solution’s symme- 

try at φ = 0 . An analytical solution for Eq. (10) can be obtained at 

φ = 0 using the method of characteristics through the Lagrange–

Charpit equations ( Delgado, 1997 ). After some simple algebra, the 

thin film drainage at φ = 0 is 

h (φ = 0 , t) = 

(
1 

h 

2 
0 

+ 
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t 

)−1 / 2 
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